The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Characterization of HdnoR, the transcriptional repressor of the 6-hydroxy-D-nicotine oxidase gene of Arthrobacter nicotinovorans pAO1, and its DNA-binding activity in response to L- and D-nicotine Derivatives.

Utilization of L-nicotine as growth substrate by Arthrobacter nicotinovorans pAO1 starts with hydroxylation of the pyridine ring at C6. Next, the pyrrolidine ring is oxidized by 6-hydroxy-L-nicotine oxidase, which acts strictly stereo-specific on the L-enantiomer. Surprisingly, L-nicotine also induces the synthesis of a 6-hydroxy-d-nicotine-specific oxidase in the bacteria. Genes of nicotine-degrading enzymes are located on the catabolic plasmid pAO1. The pAO1 sequence revealed that the 6-hydroxy-D-nicotine oxidase gene is flanked by two open reading frames with a similarity to amino acid permeases and a divergently transcribed open reading frame with a similarity to proteins of the tetracycline repressor TetR family. Reverse transcription PCR and primer extension analysis of RNA transcripts isolated from A. nicotinovorans pAO1 indicated that the 6-hydroxy-D-nicotine oxidase gene represents a transcriptional unit. DNA electromobility shift assays established that the purified TetR-similar protein represents the 6-hydroxy-D-nicotine oxidase gene repressor HdnoR and binds to the 6-hydroxy-D-nicotine oxidase gene operator with a Kd of 21 nM. The enantiomers 6-hydroxy-D- and 6-hydroxy-L-nicotine acted in vitro as inducers. In vivo analysis of 6-hydroxy-D-nicotine oxidase gene transcripts from bacteria grown with L- and D-nicotine confirmed this conclusion. The poor discrimination by HdnoR between the 6-hydroxy-L- and 6-hydroxy-D-nicotine enantiomers explains the presence of the 6-hydroxy-D-nicotine-specific enzyme in bacteria grown on L-nicotine.[1]

References

 
WikiGenes - Universities