The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

On the transcriptional regulation of methicillin resistance: MecI repressor in complex with its operator.

Bacterial resistance to antibiotics poses a serious worldwide public health problem due to the high morbidity and mortality caused by infectious diseases. Most hospital-onset infections are associated with methicillin-resistant Staphylococcus aureus (MRSA) strains that have acquired multiple drug resistance to beta-lactam antibiotics. In a response to antimicrobial stress, nearly all clinical MRSA isolates produce beta-lactamase (BlaZ) and a penicillin-binding protein with low affinity for beta-lactam antibiotics (PBP2a, also known as PBP2' or MecA). Both effectors are regulated by homologous signal transduction systems consisting of a sensor/transducer and a transcriptional repressor. MecI (methicillin repressor) blocks mecA but also blaZ transcription and that of itself and the co-transcribed sensor/transducer. The structure of MecI in complex with a cognate operator double-stranded DNA reveals a homodimeric arrangement with a novel C-terminal spiral staircase dimerization domain responsible for dimer integrity. Each protomer interacts with the DNA major groove through a winged helix DNA-binding domain and specifically recognizes the nucleotide sequence 5'-Gua-Thy-Ade-X-Thy-3'. This results in an unusual convex bending of the DNA helix. The structure of this first molecular determinant of methicillin resistance in complex with its target DNA provides insights into its regulatory mechanism and paves the way for new antimicrobial strategies against MRSA.[1]

References

  1. On the transcriptional regulation of methicillin resistance: MecI repressor in complex with its operator. García-Castellanos, R., Mallorquí-Fernández, G., Marrero, A., Potempa, J., Coll, M., Gomis-Rüth, F.X. J. Biol. Chem. (2004) [Pubmed]
 
WikiGenes - Universities