The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Tumor necrosis factor-alpha (TNF alpha) inhibits progesterone and estradiol-17beta production from cultured granulosa cells: presence of TNFalpha receptors in bovine granulosa and theca cells.

The aim of this study was to investigate whether functional tumor necrosis factor-alpha (TNFalpha) receptors are present in the granulosa cells and the cells of theca interna (theca cells), obtained from bovine follicles classified into one of three groups. Each group was defined as either small vesicular ovarian follicles (small follicles; 3-5 mm in diameter), preovulatory mature ovarian follicles (preovulatory follicles) or atretic follicles (12-18 mm) according to gross examination of the corpus luteum in the epsilateral or contralateral ovary and the uterus (size, color, consistency and mucus), and the ratio of progesterone (P(4)) and estradiol-17beta (E(2)) concentrations in follicular fluid. A Scatchard analysis showed the presence of a high-affinity binding site on both granulosa and theca cells from all follicles examined (dissociation constant: 4.7 +/- 0.15 to 6.9 +/- 1.40 nM). Moreover, TNFalpha receptor concentrations in granulosa and theca cells obtained from atretic follicles were significantly higher than those in the cells from preovulatory follicles (P<0.05). Exposure of cultured granulosa cells from small antral follicles to recombinant human TNFalpha (rhTNFalpha; 0.06-6 nM) inhibited E(2) secretion in a dose-dependent fashion (P<0.01), but did not affect P(4) secretion. In addition, rhTNFalpha inhibited follicle stimulating hormone-, forskolin- or dibutylyl cyclic AMP-induced P(4) and E(2) secretion by the cells (P<0.01). These results indicate the presence of functional TNFalpha receptors in bovine granulosa and theca cells in small, preovulatory and atretic follicles, and suggest that TNFalpha plays a role in regulating their secretory function.[1]

References

 
WikiGenes - Universities