The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Decreased immunodensities of micro-opioid receptors, receptor kinases GRK 2/6 and beta-arrestin-2 in postmortem brains of opiate addicts.

The homologous regulation of opioid receptors, through G protein-coupled receptor kinases (GRKs) and beta-arrestins, is an initial step in the complex molecular mechanisms leading to opiate tolerance and dependence. This study was designed to evaluate in parallel the contents of immunolabeled micro-opioid receptors (glycosylated proteins), two representative GRKs (GRK 2 and GRK 6) and beta-arrestin-2 in brains of opiate addicts who had died of an opiate overdose (heroin or methadone). The immunodensities of micro-opioid receptors were decreased (66 kDa protein: 24%, n=24, P<0.0001; 85 kDa protein: 16%, n=24, P<0.05) in the prefrontal cortex of opiate addicts compared with sex-, age-, and PMD-matched controls. This down-regulation of brain micro-opioid receptors was more pronounced in opiate addicts dying of a heroin overdose (27-30%, n=13) than in those who died of a methadone overdose (5-16%, n=11). In the same brains, significant decreases in the immunodensities of GRK 2 (19%, n=24, P<0.05), GRK 6 (25%, n=24, P<0.002) and beta-arrestin-2 (22%, n=24, P< 0.0005) were also quantitated. In contrast, the content of alpha-internexin (a neuronal marker used as a negative control) was not changed in brains of opiate addicts. In these subjects, there was a significant correlation between the densities of GRK 6 and beta-arrestin-2 (r=0.63, n=24, P=0.001), suggesting that both proteins are regulated in a coordinated manner by opiate drugs in the brain. The results indicate that opiate addiction in humans (tolerant state) is associated with down-regulation of brain micro-opioid receptors and regulatory GRK 2/6 and beta-arrestin-2 proteins. These molecular adaptations may be relevant mechanisms for the induction of opiate tolerance in brains of opiate addicts.[1]


WikiGenes - Universities