The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Both insulin signaling defects in the liver and obesity contribute to insulin resistance and cause diabetes in Irs2(-/-) mice.

We previously reported that insulin receptor substrate-2 (IRS-2)-deficient mice develop diabetes as a result of insulin resistance in the liver and failure of beta-cell hyperplasia. In this study we introduced the IRS-2 gene specifically into the liver of Irs2(-/-) mice with adenovirus vectors. Glucose tolerance tests revealed that the IRS-2 restoration in the liver ameliorated the hyperglycemia, but the improvement in hyperinsulinemia was only partial. Endogenous glucose production (EGP) and the rate of glucose disappearance (Rd) were measured during hyperinsulinemic-euglycemic clamp studies: EGP was increased 2-fold in the Irs2(-/-) mice, while Rd decreased by 50%. Restoration of IRS-2 in the liver suppressed EGP to a level similar to that in wild-type mice, but Rd remained decreased in the Adeno-IRS-2-infected Irs2(-/-) mice. Irs2(-/-) mice also exhibit obesity and hyperleptinemia associated with impairment of hypothalamic phosphatidylinositol 3-kinase activation. Continuous intracerebroventricular leptin infusion or caloric restriction yielded Irs2(-/-) mice whose adiposity was comparable to that of Irs2(+/+) mice, and both the hyperglycemia and the hyperinsulinemia of these mice improved with increased Rd albeit partially. Finally combination treatment consisting of adenovirus-mediated gene transfer of IRS-2 and continuous intracerebroventricular leptin infusion completely reversed the hyperglycemia and hyperinsulinemia in Irs2(-/-) mice. EGP and Rd also became normal in these mice as well as in mice treated by caloric restriction plus adenoviral gene transfer. We therefore concluded that a combination of increased EGP due to insulin signaling defects in the liver and reduced Rd due to obesity accounts for the systemic insulin resistance in Irs2(-/-) mice.[1]

References

  1. Both insulin signaling defects in the liver and obesity contribute to insulin resistance and cause diabetes in Irs2(-/-) mice. Suzuki, R., Tobe, K., Aoyama, M., Inoue, A., Sakamoto, K., Yamauchi, T., Kamon, J., Kubota, N., Terauchi, Y., Yoshimatsu, H., Matsuhisa, M., Nagasaka, S., Ogata, H., Tokuyama, K., Nagai, R., Kadowaki, T. J. Biol. Chem. (2004) [Pubmed]
 
WikiGenes - Universities