The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Lysophosphatidic acid induces chemotaxis, oxygen radical production, CD11b up-regulation, Ca2+ mobilization, and actin reorganization in human eosinophils via pertussis toxin-sensitive G proteins.

Lysophosphatidic acid (LPA) is a bioactive lipid mediator, which is generated by secretory type II phospholipase A(2) and is thought to play a major role in the pathogenesis of atopic diseases. In this study, the biological activity of LPA on human eosinophils was characterized. We showed by reverse transcription and PCR that human eosinophils express the mRNA of the LPA receptors endothelial differentiation gene (EDG)-2 and EDG-7. Experiments revealed that LPA has chemotactic activity toward eosinophils, stimulates the production of reactive oxygen metabolites, and induces up-regulation of the integrin CD11b. Signal pathway measurements indicated Ca(2+)-mobilization from intracellular stores and transient actin polymerization upon stimulation with LPA. Cell responses elicited by LPA were inhibited by pertussis toxin indicating that in eosinophils the LPA receptor(s), presumably EDG-2 and/or EDG-7, are coupled to G(i/o) proteins. Moreover, LPA-induced activation of eosinophils could be completely blocked by the EDG-2/EDG-7 antagonist diacylglycerol pyrophosphate. In addition, at optimal doses the changes induced by LPA were comparable to those obtained by the other well-characterized chemotaxins. These results indicate that LPA is a strong chemotaxin and activator of eosinophils. These findings point to a novel role of LPA in the pathogenesis of diseases with eosinophilic inflammation such as atopic diseases as chemotaxin as well as activator of proinflammatory effector functions.[1]

References

  1. Lysophosphatidic acid induces chemotaxis, oxygen radical production, CD11b up-regulation, Ca2+ mobilization, and actin reorganization in human eosinophils via pertussis toxin-sensitive G proteins. Idzko, M., Laut, M., Panther, E., Sorichter, S., Dürk, T., Fluhr, J.W., Herouy, Y., Mockenhaupt, M., Myrtek, D., Elsner, P., Norgauer, J. J. Immunol. (2004) [Pubmed]
 
WikiGenes - Universities