The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

LDL oxidized by hypochlorous acid causes irreversible platelet aggregation when combined with low levels of ADP, thrombin, epinephrine, or macrophage-derived chemokine (CCL22).

The in vitro oxidation of low-density lipoprotein (LDL) by hypochlorous acid produces a modified form (HOCl-LDL) capable of stimulating platelet function. We now report that HOCl-LDL is highly effective at inducing platelet function, causing stable aggregation and alpha-granule secretion. Such stimulation depended on the presence of low levels of primary agonists such as adenosine diphosphate (ADP) and thrombin, or others like epinephrine (EPI) and macrophage-derived chemokine ( MDC, CCL22). Agonist levels, which by themselves induced little or reversible aggregation, caused strong stable aggregation when combined with low levels of HOCl-LDL. Platelet activation by HOCl-LDL and ADP (1 microM) caused P-selectin (CD62P) exposure, without serotonin or adenosine triphosphate (ATP) secretion. Intracellular calcium levels rose slowly (from 100 to 200 nM) in response to HOCl-LDL alone and rapidly when combined with ADP to about 300 nM. p38 mitogen- activated protein kinase ( MAPK) became phosphorylated in response to HOCl-LDL alone. This phosphorylation was not blocked by the protein kinase C (PKC) inhibitor bisindolylmaleimide, which reduced the extent of aggregation and calcium increase. However, the p38 MAPK inhibitor SB203580 blocked platelet aggregation and phosphorylation of p38 MAPK. These findings suggest that HOCl-LDL exposed during atherosclerotic plaque rupture, coupled with low levels of primary agonists, can rapidly induce extensive and stable thrombus formation.[1]

References

 
WikiGenes - Universities