The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

HYPOCHLOROUS ACID     hypochlorous acid

Synonyms: chloranol, HClO, HOCl, AG-D-76548, CHEBI:24757, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of hypochlorous acid


Psychiatry related information on hypochlorous acid

  • A significant specific increase in the actin carbonyl content has been recently demonstrated in human brain regions severely affected by the Alzheimer's disease pathology, in postischemic isolated rat hearts, and in human intestinal cell monolayers following incubation with hypochlorous acid (HOCl) [6].

High impact information on hypochlorous acid


Chemical compound and disease context of hypochlorous acid


Biological context of hypochlorous acid


Anatomical context of hypochlorous acid


Associations of hypochlorous acid with other chemical compounds


Gene context of hypochlorous acid


Analytical, diagnostic and therapeutic context of hypochlorous acid


  1. Effects of the putative neutrophil-generated toxin, hypochlorous acid, on membrane permeability and transport systems of Escherichia coli. Albrich, J.M., Gilbaugh, J.H., Callahan, K.B., Hurst, J.K. J. Clin. Invest. (1986) [Pubmed]
  2. Viricidal effect of polymorphonuclear leukocytes on human immunodeficiency virus-1. Role of the myeloperoxidase system. Klebanoff, S.J., Coombs, R.W. J. Clin. Invest. (1992) [Pubmed]
  3. Reactions of hypochlorous acid with tyrosine and peptidyl-tyrosyl residues give dichlorinated and aldehydic products in addition to 3-chlorotyrosine. Fu, S., Wang, H., Davies, M., Dean, R. J. Biol. Chem. (2000) [Pubmed]
  4. Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis and implications in acute coronary syndromes. Sugiyama, S., Okada, Y., Sukhova, G.K., Virmani, R., Heinecke, J.W., Libby, P. Am. J. Pathol. (2001) [Pubmed]
  5. Immunohistochemical detection of myeloperoxidase and its oxidation products in Kupffer cells of human liver. Brown, K.E., Brunt, E.M., Heinecke, J.W. Am. J. Pathol. (2001) [Pubmed]
  6. Methionine oxidation as a major cause of the functional impairment of oxidized actin. Dalle-Donne, I., Rossi, R., Giustarini, D., Gagliano, N., Di Simplicio, P., Colombo, R., Milzani, A. Free Radic. Biol. Med. (2002) [Pubmed]
  7. The myeloperoxidase system of human phagocytes generates Nepsilon-(carboxymethyl)lysine on proteins: a mechanism for producing advanced glycation end products at sites of inflammation. Anderson, M.M., Requena, J.R., Crowley, J.R., Thorpe, S.R., Heinecke, J.W. J. Clin. Invest. (1999) [Pubmed]
  8. Degradation of biomaterials by phagocyte-derived oxidants. Sutherland, K., Mahoney, J.R., Coury, A.J., Eaton, J.W. J. Clin. Invest. (1993) [Pubmed]
  9. Inhibition of tumor cell glutamine uptake by isolated neutrophils. Learn, D.B., Thomas, E.L. J. Clin. Invest. (1988) [Pubmed]
  10. Oxidative regulation of neutrophil elastase-alpha-1-proteinase inhibitor interactions. Ossanna, P.J., Test, S.T., Matheson, N.R., Regiani, S., Weiss, S.J. J. Clin. Invest. (1986) [Pubmed]
  11. Neutrophils degrade subendothelial matrices in the presence of alpha-1-proteinase inhibitor. Cooperative use of lysosomal proteinases and oxygen metabolites. Weiss, S.J., Regiani, S. J. Clin. Invest. (1984) [Pubmed]
  12. Nitrite-mediated protection against hypochlorous acid-induced chondrocyte toxicity: a novel cytoprotective role of nitric oxide in the inflamed joint? Whiteman, M., Rose, P., Siau, J.L., Halliwell, B. Arthritis Rheum. (2003) [Pubmed]
  13. Cytoprotection against neutrophil derived hypochlorous acid: a potential mechanism for the therapeutic action of 5-aminosalicylic acid in ulcerative colitis. Dallegri, F., Ottonello, L., Ballestrero, A., Bogliolo, F., Ferrando, F., Patrone, F. Gut (1990) [Pubmed]
  14. Hypochlorous acid induces apoptosis of cultured cortical neurons through activation of calpains and rupture of lysosomes. Yap, Y.W., Whiteman, M., Bay, B.H., Li, Y., Sheu, F.S., Qi, R.Z., Tan, C.H., Cheung, N.S. J. Neurochem. (2006) [Pubmed]
  15. Hypochlorous acid-promoted loss of metabolic energy in Escherichia coli. Barrette, W.C., Albrich, J.M., Hurst, J.K. Infect. Immun. (1987) [Pubmed]
  16. The effect of hypochlorous acid and hydrogen peroxide on coronary flow and arrhythmogenesis in myocardial ischemia and reperfusion. Okabe, E., Takahashi, S., Norisue, M., Manson, N.H., Kukreja, R.C., Hess, M.L., Ito, H. Eur. J. Pharmacol. (1993) [Pubmed]
  17. An allelic association implicates myeloperoxidase in the etiology of acute promyelocytic leukemia. Reynolds, W.F., Chang, E., Douer, D., Ball, E.D., Kanda, V. Blood (1997) [Pubmed]
  18. Calcium homeostasis in rabbit ventricular myocytes. Disruption by hypochlorous acid and restoration by dithiothreitol. Eley, D.W., Korecky, B., Fliss, H., Désilets, M. Circ. Res. (1991) [Pubmed]
  19. Segregation of recessive phenotypes in somatic cell hybrids: role of mitotic recombination, gene inactivation, and chromosome nondisjunction. Campbell, C.E., Worton, R.G. Mol. Cell. Biol. (1981) [Pubmed]
  20. LDL oxidized by hypochlorous acid causes irreversible platelet aggregation when combined with low levels of ADP, thrombin, epinephrine, or macrophage-derived chemokine (CCL22). Coleman, L.G., Polanowska-Grabowska, R.K., Marcinkiewicz, M., Gear, A.R. Blood (2004) [Pubmed]
  21. Distinct modes of cell death induced by different reactive oxygen species: amino acyl chloramines mediate hypochlorous acid-induced apoptosis. Englert, R.P., Shacter, E. J. Biol. Chem. (2002) [Pubmed]
  22. Proteolytic inactivation of alpha-1-proteinase inhibitor by a neutrophil metalloproteinase. Desrochers, P.E., Weiss, S.J. J. Clin. Invest. (1988) [Pubmed]
  23. Monocyte and granulocyte-mediated tumor cell destruction. A role for the hydrogen peroxide-myeloperoxidase-chloride system. Weiss, S.J., Slivka, A. J. Clin. Invest. (1982) [Pubmed]
  24. Role of hydrogen peroxide in neutrophil-mediated destruction of cultured endothelial cells. Weiss, S.J., Young, J., LoBuglio, A.F., Slivka, A., Nimeh, N.F. J. Clin. Invest. (1981) [Pubmed]
  25. Biological reactivity of hypochlorous acid: implications for microbicidal mechanisms of leukocyte myeloperoxidase. Albrich, J.M., McCarthy, C.A., Hurst, J.K. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  26. Oxidation of a specific methionine in thrombomodulin by activated neutrophil products blocks cofactor activity. A potential rapid mechanism for modulation of coagulation. Glaser, C.B., Morser, J., Clarke, J.H., Blasko, E., McLean, K., Kuhn, I., Chang, R.J., Lin, J.H., Vilander, L., Andrews, W.H. J. Clin. Invest. (1992) [Pubmed]
  27. Isolation and initial characterization of tumoricidal monokine(s) from the human monocytic leukemia cell line THP-1. Armstrong, C.A., Klostergaard, J., Granger, G.A. J. Natl. Cancer Inst. (1985) [Pubmed]
  28. Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein. A mechanism for the generation of highly reactive alpha-hydroxy and alpha,beta-unsaturated aldehydes by phagocytes at sites of inflammation. Anderson, M.M., Hazen, S.L., Hsu, F.F., Heinecke, J.W. J. Clin. Invest. (1997) [Pubmed]
  29. The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCA1-dependent cholesterol transport. Bergt, C., Pennathur, S., Fu, X., Byun, J., O'Brien, K., McDonald, T.O., Singh, P., Anantharamaiah, G.M., Chait, A., Brunzell, J., Geary, R.L., Oram, J.F., Heinecke, J.W. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  30. Myeloperoxidase generates 5-chlorouracil in human atherosclerotic tissue: a potential pathway for somatic mutagenesis by macrophages. Takeshita, J., Byun, J., Nhan, T.Q., Pritchard, D.K., Pennathur, S., Schwartz, S.M., Chait, A., Heinecke, J.W. J. Biol. Chem. (2006) [Pubmed]
  31. Redox properties of the couple compound I/native enzyme of myeloperoxidase and eosinophil peroxidase. Arnhold, J., Furtmüller, P.G., Regelsberger, G., Obinger, C. Eur. J. Biochem. (2001) [Pubmed]
  32. Granulocyte colony-stimulating factor reverses septic shock-induced polymorphonuclear leukocyte dysfunction. Simms, H.H., D'Amico, R. Surgery (1994) [Pubmed]
  33. Hypochlorous acid stimulation of the mitogen-activated protein kinase pathway enhances cell survival. Midwinter, R.G., Vissers, M.C., Winterbourn, C.C. Arch. Biochem. Biophys. (2001) [Pubmed]
  34. Emerging roles for phospholipid transfer protein in lipid and lipoprotein metabolism. Albers, J.J., Cheung, M.C. Curr. Opin. Lipidol. (2004) [Pubmed]
  35. Chlorination of bacterial and neutrophil proteins during phagocytosis and killing of Staphylococcus aureus. Chapman, A.L., Hampton, M.B., Senthilmohan, R., Winterbourn, C.C., Kettle, A.J. J. Biol. Chem. (2002) [Pubmed]
  36. Metabolism of leukotriene B4 by cultured human keratinocytes. Formation of glutathione conjugates and dihydro metabolites. Wheelan, P., Zirrolli, J.A., Morelli, J.G., Murphy, R.C. J. Biol. Chem. (1993) [Pubmed]
  37. Myeloperoxidase-catalyzed 3-chlorotyrosine formation in dialysis patients. Himmelfarb, J., McMenamin, M.E., Loseto, G., Heinecke, J.W. Free Radic. Biol. Med. (2001) [Pubmed]
  38. Myeloperoxidase and protein oxidation in the airways of young children with cystic fibrosis. Kettle, A.J., Chan, T., Osberg, I., Senthilmohan, R., Chapman, A.L., Mocatta, T.J., Wagener, J.S. Am. J. Respir. Crit. Care Med. (2004) [Pubmed]
  39. Changes in neutrophil deformability following in vitro smoke exposure: mechanism and protection. Drost, E.M., Selby, C., Lannan, S., Lowe, G.D., MacNee, W. Am. J. Respir. Cell Mol. Biol. (1992) [Pubmed]
WikiGenes - Universities