The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Comparative analysis of gene expression among low G+C gram-positive genomes.

We present a comparative analysis of predicted highly expressed (PHX) genes in the low G+C Gram-positive genomes of Bacillus subtilis, Bacillus halodurans, Listeria monocytogenes, Listeria innocua, Lactococcus lactis, Streptococcus pyogenes, Streptococcus pneumoniae, Staphylococcus aureus, Clostridium acetobutylicum, and Clostridium perfringens. Most enzymes acting in glycolysis and fermentation pathways are PHX in these genomes, but not those involved in the TCA cycle and respiration, suggesting that these organisms have predominantly adapted to grow rapidly in an anaerobic environment. Only B. subtilis and B. halodurans have several TCA cycle PHX genes, whereas the TCA pathway is entirely missing from the metabolic repertoire of the two Streptococcus species and is incomplete in Listeria, Lactococcus, and Clostridium. Pyruvate-formate lyase, an enzyme critical in mixed acid fermentation, is among the highest PHX genes in all these genomes except for C. acetobutylicum (not PHX), and B. subtilis, and B. halodurans (missing). Pyruvate-formate lyase is also prominently PHX in enteric gamma-proteobacteria, but not in other prokaryotes. Phosphotransferase system genes are generally PHX with selection of different substrates in different genomes. The various substrate specificities among phosphotransferase systems in different genomes apparently reflect on differences in habitat, lifestyle, and nutrient sources.[1]


  1. Comparative analysis of gene expression among low G+C gram-positive genomes. Karlin, S., Theriot, J., Mrázek, J. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
WikiGenes - Universities