The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The role of bradykinin in the antifibrotic actions of perindoprilat on human mesangial cells.

BACKGROUND: Angiotensin-converting enzyme inhibitors (ACE-I) protect against the development of glomerulosclerosis using mechanisms partly dissociated from their systemic antihypertensive action. The aim of the current study was to delineate the mechanism of action underlying the antifibrotic effects of the ACE-I perindoprilat in the context of macrophage-mediated scarring in human mesangial cells. METHODS: Mesangial cells were treated with macrophage-conditioned medium (MPCM) in the presence or absence of the ACE-I perindoprilat. RESULTS: Forty micromol/L perindoprilat reduced MPCM-induced mesangial cell fibronectin levels by 19.4 +/- 0.6% (P < 0.001). Immunoprecipitation of 35S-methionine biosynthetically labeled fibronectin and Northern analysis suggested that the decrease in fibronectin levels was not caused by reduced synthesis. MPCM stimulated the production of matrix metalloproteinases (MMP) 2, 3, and 9 in mesangial cells; however, these were not significantly altered by ACE-I treatment, and neither was production of their tissue inhibitor of metalloproteinases (TIMP-1). Addition of exogenous bradykinin to MPCM-treated mesangial cells resulted in a 22.5 +/- 1.4% (P < 0.02) reduction in secreted fibronectin levels, while semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) and Southern blotting demonstrated that bradykinin B2 receptor expression was up regulated by 71 +/- 30% in MPCM-stimulated mesangial cells in response to ACE-I treatment (P= 0.032). Moreover, the bradykinin B2 receptor antagonist HOE 140 attenuated the beneficial effects of perindoprilat. MPCM-stimulated mesangial cell protein expression levels of plasminogen activator system components tissue plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1) were altered after treatment with ACE-I. CONCLUSION: These results suggest that ACE-I-induced renoprotection, in the context of macrophage-stimulated mesangial cell scarring, is mediated, at least in part, via the actions of bradykinin.[1]

References

  1. The role of bradykinin in the antifibrotic actions of perindoprilat on human mesangial cells. Pawluczyk, I.Z., Patel, S.R., Harris, K.P. Kidney Int. (2004) [Pubmed]
 
WikiGenes - Universities