The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Greater vascularity, lowered HIF-1/DNA binding, and elevated GSH as markers of adaptation to in vivo chronic hypoxia.

Vascularity is increased in placentas from high- compared with low-altitude pregnancies. An angiogenic response to hypoxia may protect an organ from further hypoxic insult by increasing blood flow and oxygen delivery to the tissue. We hypothesized that increased placental vascularity is sufficient to adapt to high altitude. Therefore, indexes of hypoxic stress would not be present in placentas from successful high-altitude pregnancies. Full-thickness placental biopsies were 1) collected and frozen in liquid nitrogen within 5 min of placental delivery and 2) fixed in formalin for stereologic analyses at high (3,100 m, n = 10) and low (1,600 m, n = 10) altitude. Hypoxia-inducible transcription factor (HIF-1) activity was analyzed by ELISA. Western blot analyses were used to evaluate HIF-1alpha, HIF-1beta, HIF-2alpha, von Hippel-Lindau protein, VEGF, Flt-1, enolase, and GAPDH. Magnetic resonance spectroscopy was used to evaluate endogenous metabolism. The ratio of placental capillary surface density to villous surface density was 70% greater at high compared with low altitude. HIF-1 activity and HIF-1-associated proteins were unchanged in placentas from high- vs. low-altitude pregnancies. Placental expression of HIF-1-mediated proteins VEGF, Flt-1, enolase, and GAPDH were unchanged at high vs. low altitude. Succinate, GSH, phosphomonoesters, and ADP were elevated in placenta from high compared with low altitude. Placentas from uncomplicated high-altitude pregnancies have greater vascularity and no indication of significant hypoxic stress at term compared with placentas from low altitude.[1]


  1. Greater vascularity, lowered HIF-1/DNA binding, and elevated GSH as markers of adaptation to in vivo chronic hypoxia. Tissot van Patot, M.C., Bendrick-Peart, J., Beckey, V.E., Serkova, N., Zwerdlinger, L. Am. J. Physiol. Lung Cell Mol. Physiol. (2004) [Pubmed]
WikiGenes - Universities