The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Discriminatory aptamer reveals serum response element transcription regulated by cytohesin-2.

Cytohesins are a family of highly homologous guanine nucleotide exchange factors (GEFs) that act on ADP-ribosylation factors (ARFs). The small ARF-GEFs are involved in integrin signaling, actin cytoskeleton remodeling, and vesicle transport. Here, we selected and applied a specific inhibitor for ARF nucleotide-binding site opener (ARNO)/cytohesin-2, an RNA aptamer that clearly discriminates between cytohesin-1 and cytohesin-2. This reagent bound to an N-terminal segment of cytohesin-2 and did not inhibit ARF- GEF function in vitro. When transfected into HeLa cells, it persisted for at least 6 h without requiring stabilization. Its effect in vivo was to down-regulate gene expression mediated through the serum-response element and knockdown mitogen-activated protein kinase activation, indicating that cytohesin-2 acts by means of mitogen-activated protein kinase signaling. We conclude that the N-terminal coiled-coil and parts of the Sec7 domain of cytohesin-2 are required for serum-mediated transcriptional activation in nonimmune cells, whereas cytohesin-1 is not. Our results indicate that intramer technology can be used not only for assigning novel biological functions to proteins or protein domains but also to prove nonredundancy of highly homologous proteins.[1]


  1. Discriminatory aptamer reveals serum response element transcription regulated by cytohesin-2. Theis, M.G., Knorre, A., Kellersch, B., Moelleken, J., Wieland, F., Kolanus, W., Famulok, M. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
WikiGenes - Universities