The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Inhibition of activator protein 1 activation, vascular endothelial growth factor, and cyclooxygenase-2 expression by 15-deoxy-Delta12,14-prostaglandin J2 in colon carcinoma cells: evidence for a redox-sensitive peroxisome proliferator-activated receptor-gamma-independent mechanism.

Cyclooxygenase (COX)-2 and vascular endothelial growth factor (VEGF) are significantly associated with tumor growth and metastasis. Here we show that phorbol ester-mediated induction of VEGF and COX-2 expression in colon carcinoma cells is inhibited by 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)). This cyclopentenone was able to inhibit activator protein1 (AP-1)-dependent transcriptional induction of COX-2 and VEGF promoters induced by phorbol 12-myristate 13-acetate (PMA) or c-Jun overexpression. 15d-PGJ(2) interfered with at least two steps within the signaling pathway leading to AP-1 activation. First, 15d-PGJ(2) impaired AP-1 binding to a consensus DNA sequence. Second, 15d-PGJ(2) selectively inhibited c-Jun NH(2) terminal kinase (JNK) but not extracellular signal-regulated kinase or p38 mitogen-activated protein kinase activation induced by PMA. This led to a decreased ability of JNK to phosphorylate c-Jun and to activate its transactivating activity. Inhibition of AP-1 activation and COX-2 or VEGF transcriptional induction by this cyclopentenone was found to be independent of peroxisome proliferator-activated receptor-gamma (PPARgamma) because it was not affected by either expression of a dominant negative form of PPARgamma or the use of a PPARgamma antagonist. In contrast, we have found that the effects of 15d-PGJ(2) on AP-1 activation may occur through its ability to induce intracellular oxidative stress. The antioxidant N-acetylcysteine significantly reversed the inhibition by 15d-PGJ(2) of AP-1 activity and COX-2 or VEGF transcriptional induction. Together, these findings provide new insight into the antitumoral properties of 15d-PGJ(2) through the inhibition of the induction of AP-1-dependent genes involved in tumor progression, such as COX-2 and VEGF.[1]

References

 
WikiGenes - Universities