The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Reduction of nitric oxide synthase 2 expression by distamycin A improves survival from endotoxemia.

NO synthase 2 (NOS2) plays an important role in endotoxemia through overproduction of NO. Distamycin A (Dist A) belongs to a class of drugs termed minor-groove DNA binders, which can inhibit transcription factor binding to AT-rich regions of DNA. We and others have previously shown that AT-rich regions of DNA surrounding transcription factor binding sites in the NOS2 promoter are critical for NOS2 induction by inflammatory stimuli in vitro. Therefore, we hypothesized that Dist A would attenuate NOS2 up-regulation in vivo during endotoxemia and improve animal survival. C57BL/6 wild-type (WT) mice treated with Dist A and LPS (endotoxin) showed significantly improved survival compared with animals treated with LPS alone. In contrast, LPS-treated C57BL/6 NOS2-deficient (NOS2-/-) mice did not benefit from the protective effect of Dist A on mortality from endotoxemia. Treatment with Dist A resulted in protection from hypotension in LPS-treated WT mice, but not in NOS2-/- mice. Furthermore, LPS-induced NOS2 expression was attenuated in vivo (WT murine tissues) and in vitro (primary peritoneal and RAW 264.7 murine macrophages) with addition of Dist A. Dist A selectively decreased IFN regulatory factor-1 DNA binding in the enhancer region of the NOS2 promoter, and this IFN regulatory factor-1 site is critical for the effect of Dist A in attenuating LPS induction of NOS2. Our data point to a novel approach in modulating NOS2 expression in vivo during endotoxemia and suggest the potential for alternative treatment approaches for critical illness.[1]

References

  1. Reduction of nitric oxide synthase 2 expression by distamycin A improves survival from endotoxemia. Baron, R.M., Carvajal, I.M., Liu, X., Okabe, R.O., Fredenburgh, L.E., Macias, A.A., Chen, Y.H., Ejima, K., Layne, M.D., Perrella, M.A. J. Immunol. (2004) [Pubmed]
 
WikiGenes - Universities