The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Endotoxemia

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Endotoxemia

 

Psychiatry related information on Endotoxemia

  • IL-1 alone can induce many of the symptoms of endotoxemia in monkeys including fever, loss of appetite, and lethargy, however, test animals are slow to recover and may become desensitized to IL-1 [6].
 

High impact information on Endotoxemia

  • Cortistatin, a new antiinflammatory peptide with therapeutic effect on lethal endotoxemia [3].
  • Epinephrine exerts anticoagulant effects during human endotoxemia [7].
  • Human tumor necrosis factor receptor (p55) and interleukin 10 gene transfer in the mouse reduces mortality to lethal endotoxemia and also attenuates local inflammatory responses [8].
  • These results indicate that TNF, in part, mediates the induction of IL-10 in endotoxemia, resulting in an autoregulatory feedback loop [9].
  • IL-6 is, however, an important intermediate factor in activation of coagulation in low grade endotoxemia in chimpanzees [10].
 

Chemical compound and disease context of Endotoxemia

  • Meningococcal antisera raised against LPS from MGC A, B, and C also provided good protection against endotoxemia from the homologous capsular groups, but it was inconsistent against the heterologous serogroups [11].
  • Nitric oxide (NO) synthesis during experimental endotoxemia has been shown to have both deleterious and beneficial effects [12].
  • Platelet depletion did not significantly attenuate the alterations in pulmonary hemodynamics, lung mechanics, lung fluid and solute exchange, or the normal increase in lung lymph concentrations of thromboxane B2 or 6-keto-PGF1 alpha observed following endotoxemia in the sheep [13].
  • Prostacyclin reversal of lethal endotoxemia in dogs [14].
  • We conclude that ethanol ingestion in rats alters alveolar type II cell glutathione levels and function, thereby predisposing the lung to acute edematous injury after endotoxemia [15].
 

Biological context of Endotoxemia

 

Anatomical context of Endotoxemia

  • These results suggest that LPS could increase neutrophil-mediated host defense or the tissue damage associated with endotoxemia by enhancing the generation of oxygen metabolites by neutrophils [20].
  • Experimental endotoxemia caused differential expression of the COX isozymes in monocytes and polymorphonuclear leucocytes ex vivo [21].
  • The purpose of this study was to investigate the role of endothelin 1 in hepatic microcirculation, oxygen transport, and liver injury during endotoxemia [22].
  • CONCLUSIONS: Our observations suggest that NO, O(2)(-), and ONOO- production are all important mediators in the induction of NF-kappaB activity during endotoxemia and that, in vivo, E-selectin expression on endothelium may not always be associated with whole-organ NF-kappaB activation [23].
  • Although thromboxanes (TXs), whose synthesis is regulated by cyclooxygenase (COX), have been suggested to promote inflammation in the liver, little is known about the role of TXA(2) in leukocyte endothelial interaction during endotoxemia [24].
 

Gene context of Endotoxemia

 

Analytical, diagnostic and therapeutic context of Endotoxemia

References

  1. HMG-1 as a late mediator of endotoxin lethality in mice. Wang, H., Bloom, O., Zhang, M., Vishnubhakat, J.M., Ombrellino, M., Che, J., Frazier, A., Yang, H., Ivanova, S., Borovikova, L., Manogue, K.R., Faist, E., Abraham, E., Andersson, J., Andersson, U., Molina, P.E., Abumrad, N.N., Sama, A., Tracey, K.J. Science (1999) [Pubmed]
  2. Prostaglandins, leukotrienes, and platelet-activating factor in shock. Feuerstein, G., Hallenbeck, J.M. Annu. Rev. Pharmacol. Toxicol. (1987) [Pubmed]
  3. Cortistatin, a new antiinflammatory peptide with therapeutic effect on lethal endotoxemia. Gonzalez-Rey, E., Chorny, A., Robledo, G., Delgado, M. J. Exp. Med. (2006) [Pubmed]
  4. Staphylococcus epidermidis induces complement activation, tumor necrosis factor and interleukin-1, a shock-like state and tissue injury in rabbits without endotoxemia. Comparison to Escherichia coli. Wakabayashi, G., Gelfand, J.A., Jung, W.K., Connolly, R.J., Burke, J.F., Dinarello, C.A. J. Clin. Invest. (1991) [Pubmed]
  5. Dissociation of systemic and renal effects in endotoxemia. Prostaglandin inhibition uncovers an important role of renal nerves. Henrich, W.L., Hamasaki, Y., Said, S.I., Campbell, W.B., Cronin, R.E. J. Clin. Invest. (1982) [Pubmed]
  6. An ex vivo method for studying inflammation in cynomolgus monkeys: analysis of interleukin-1 receptor antagonist. Akeson, A., Bohnke, R., Schroeder, K., Kastner, P., Seligmann, B., Robinson, J. Journal of pharmacological and toxicological methods. (1996) [Pubmed]
  7. Epinephrine exerts anticoagulant effects during human endotoxemia. van der Poll, T., Levi, M., Dentener, M., Jansen, P.M., Coyle, S.M., Braxton, C.C., Buurman, W.A., Hack, C.E., ten Cate, J.W., Lowry, S.F. J. Exp. Med. (1997) [Pubmed]
  8. Human tumor necrosis factor receptor (p55) and interleukin 10 gene transfer in the mouse reduces mortality to lethal endotoxemia and also attenuates local inflammatory responses. Rogy, M.A., Auffenberg, T., Espat, N.J., Philip, R., Remick, D., Wollenberg, G.K., Copeland, E.M., Moldawer, L.L. J. Exp. Med. (1995) [Pubmed]
  9. Regulation of interleukin 10 release by tumor necrosis factor in humans and chimpanzees. van der Poll, T., Jansen, J., Levi, M., ten Cate, H., ten Cate, J.W., van Deventer, S.J. J. Exp. Med. (1994) [Pubmed]
  10. Elimination of interleukin 6 attenuates coagulation activation in experimental endotoxemia in chimpanzees. van der Poll, T., Levi, M., Hack, C.E., ten Cate, H., van Deventer, S.J., Eerenberg, A.J., de Groot, E.R., Jansen, J., Gallati, H., Büller, H.R. J. Exp. Med. (1994) [Pubmed]
  11. Neutralization of meningococcal endotoxin by antibody to core glycolipid. Davis, C.E., Ziegler, E.J., Arnold, K.F. J. Exp. Med. (1978) [Pubmed]
  12. The protective role of endogenously synthesized nitric oxide in staphylococcal enterotoxin B-induced shock in mice. Florquin, S., Amraoui, Z., Dubois, C., Decuyper, J., Goldman, M. J. Exp. Med. (1994) [Pubmed]
  13. Effects of platelet depletion on the unanesthetized sheep's pulmonary response to endotoxemia. Snapper, J.R., Hinson, J.M., Hutchison, A.A., Lefferts, P.L., Ogletree, M.L., Brigham, K.L. J. Clin. Invest. (1984) [Pubmed]
  14. Prostacyclin reversal of lethal endotoxemia in dogs. Krausz, M.M., Utsunomiya, T., Feuerstein, G., Wolfe, J.H., Shepro, D., Hechtman, H.B. J. Clin. Invest. (1981) [Pubmed]
  15. Chronic ethanol ingestion impairs alveolar type II cell glutathione homeostasis and function and predisposes to endotoxin-mediated acute edematous lung injury in rats. Holguin, F., Moss, I., Brown, L.A., Guidot, D.M. J. Clin. Invest. (1998) [Pubmed]
  16. Altered transcriptional regulation of phosphoenolpyruvate carboxykinase in rats following endotoxin treatment. Hill, M., McCallum, R. J. Clin. Invest. (1991) [Pubmed]
  17. Platelet-activating factor contributes to the induction of nitric oxide synthase by bacterial lipopolysaccharide. Szabó, C., Wu, C.C., Mitchell, J.A., Gross, S.S., Thiemermann, C., Vane, J.R. Circ. Res. (1993) [Pubmed]
  18. Interleukin-10 inhibits activation of coagulation and fibrinolysis during human endotoxemia. Pajkrt, D., van der Poll, T., Levi, M., Cutler, D.L., Affrime, M.B., van den Ende, A., ten Cate, J.W., van Deventer, S.J. Blood (1997) [Pubmed]
  19. Redox manipulation using the thiol-oxidizing agent diethyl maleate prevents hepatocellular necrosis and apoptosis in a rodent endotoxemia model. Jones, J.J., Fan, J., Nathens, A.B., Kapus, A., Shekhman, M., Marshall, J.C., Parodo, J., Rotstein, O.D. Hepatology (1999) [Pubmed]
  20. Priming of neutrophils for enhanced release of oxygen metabolites by bacterial lipopolysaccharide. Evidence for increased activity of the superoxide-producing enzyme. Guthrie, L.A., McPhail, L.C., Henson, P.M., Johnston, R.B. J. Exp. Med. (1984) [Pubmed]
  21. Effect of regulated expression of human cyclooxygenase isoforms on eicosanoid and isoeicosanoid production in inflammation. McAdam, B.F., Mardini, I.A., Habib, A., Burke, A., Lawson, J.A., Kapoor, S., FitzGerald, G.A. J. Clin. Invest. (2000) [Pubmed]
  22. Endothelin A-receptor blockade worsens endotoxin-induced hepatic microcirculatory changes and necrosis. Nishida, T., Huang, T.P., Seiyama, A., Hamada, E., Kamiike, W., Ueshima, S., Kazuo, H., Matsuda, H. Gastroenterology (1998) [Pubmed]
  23. Regulation of intestinal nuclear factor-kappaB activity and E-selectin expression during sepsis: a role for peroxynitrite. Lush, C.W., Cepinskas, G., Kvietys, P.R. Gastroenterology (2003) [Pubmed]
  24. Role of thromboxane derived from COX-1 and -2 in hepatic microcirculatory dysfunction during endotoxemia in mice. Katagiri, H., Ito, Y., Ishii, K., Hayashi, I., Suematsu, M., Yamashina, S., Murata, T., Narumiya, S., Kakita, A., Majima, M. Hepatology (2004) [Pubmed]
  25. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. Andersson, U., Wang, H., Palmblad, K., Aveberger, A.C., Bloom, O., Erlandsson-Harris, H., Janson, A., Kokkola, R., Zhang, M., Yang, H., Tracey, K.J. J. Exp. Med. (2000) [Pubmed]
  26. Interleukin 10 protects mice from lethal endotoxemia. Howard, M., Muchamuel, T., Andrade, S., Menon, S. J. Exp. Med. (1993) [Pubmed]
  27. Hematologic and immunomodulatory effects of an interleukin-1 receptor antagonist coinfusion during low-dose endotoxemia in healthy humans. Granowitz, E.V., Porat, R., Mier, J.W., Orencole, S.F., Callahan, M.V., Cannon, J.G., Lynch, E.A., Ye, K., Poutsiaka, D.D., Vannier, E. Blood (1993) [Pubmed]
  28. Passive immunization of mice against D factor blocks lethality and cytokine release during endotoxemia. Block, M.I., Berg, M., McNamara, M.J., Norton, J.A., Fraker, D.L., Alexander, H.R. J. Exp. Med. (1993) [Pubmed]
  29. The in vivo kinetics of tissue factor messenger RNA expression during human endotoxemia: relationship with activation of coagulation. Franco, R.F., de Jonge, E., Dekkers, P.E., Timmerman, J.J., Spek, C.A., van Deventer, S.J., van Deursen, P., van Kerkhoff, L., van Gemen, B., ten Cate, H., van der Poll, T., Reitsma, P.H. Blood (2000) [Pubmed]
  30. C1 inhibitor prevents endotoxin shock via a direct interaction with lipopolysaccharide. Liu, D., Cai, S., Gu, X., Scafidi, J., Wu, X., Davis, A.E. J. Immunol. (2003) [Pubmed]
  31. Muscle protein breakdown during endotoxemia in rats and after treatment with interleukin-1 receptor antagonist (IL-1ra). Zamir, O., Hasselgren, P.O., O'Brien, W., Thompson, R.C., Fischer, J.E. Ann. Surg. (1992) [Pubmed]
 
WikiGenes - Universities