The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Identification of native rat cerebellar granule cell currents due to background K channel KCNK5 (TASK-2).

The TWIK-related, Acid Sensing K (TASK-2; KCNK5) potassium channel is a member of the tandem pore (2P) family of potassium channels and mediates an alkaline pH-activated, acid pH-inhibited, outward-rectified potassium conductance. In previous work, we demonstrated TASK-2 protein expression in newborn rat cerebellar granule neurons (CGNs). In this study, we demonstrate TASK-2 functional expression in CGNs as a component of the pH-sensitive, volatile anesthetic-potentiated, standing-outward potassium conductance (I(K,SO)). Using excised, inside-out patch-clamp technique, we studied CGNs grown in primary culture. We identified four distinct, noninactivating single channel potassium conductances, Types 1-4. Types 1-3 have previously been attributed to TASK-1 (KCNK3), TASK-3 (KCNK9) and TASK-1/TASK-3 heteromers, and TREK-2 (KCNK10) 2P potassium channel function, respectively; however, the Type 4 conductance is currently unassigned. Previous studies demonstrated that Type 4 single channel activity is potentiated by extracellular, alkaline pH and cytoplasmic arachidonic acid (10-20 microM) and inhibited by cytoplasmic tetraethylammonium (TEA; 1 mM). We determined that heterologously expressed TASK-2 channels have single channel gating, conductance properties and pH sensitivity identical to the Type 4 conductance. Additionally, we found that TASK-2 single channel activity, like the Type 4 conductance is potentiated by cytoplasmic arachidonic acid (20 microM) and inhibited by cytoplasmic TEA (1 mM). We conclude that TASK-2 mediates the Type 4 single channel conductance in CGNs as a component of I(K,SO).[1]

References

  1. Identification of native rat cerebellar granule cell currents due to background K channel KCNK5 (TASK-2). Cotten, J.F., Zou, H.L., Liu, C., Au, J.D., Yost, C.S. Brain Res. Mol. Brain Res. (2004) [Pubmed]
 
WikiGenes - Universities