The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

srf-3, a mutant of Caenorhabditis elegans, resistant to bacterial infection and to biofilm binding, is deficient in glycoconjugates.

srf-3 is a mutant of C. elegans that is resistant to infection by Microbacterium nematophilum and to binding of the biofilm produced by Yersinia pseudotuberculosis and Yersinia pestis. Recently, SRF-3 was characterized as a nucleotide sugar transporter of the Golgi apparatus occurring exclusively in hypodermal seam cells, pharyngeal cells, and spermatheca. Based on the above observations, we hypothesized that srf-3 may have altered glyconjugates that may enable the mutant nematode to grow unaffected in the presence of the above pathogenic bacteria. Following analyses of N- and O-linked glycoconjugates of srf-3 and wild type nematodes using a combination of enzymatic degradation, permethylation, and mass spectrometry, we found in srf-3 a 65% reduction of acidic O-linked glycoconjugates containing glucuronic acid and galactose as well as a reduction of N-linked glycoconjugates containing galactose and fucose. These results are consistent with the specificity of SRF-3 for UDP-galactose and strongly suggest that the above glycoconjugates play an important role in allowing adhesion of M. nematophilum or Y. pseudotuberculosis biofilm to wild type C. elegans. Furthermore, because seam cells as well as pharyngeal cells secrete their glycoconjugates to the cuticle and surrounding surfaces, the results also demonstrate the critical role of these cells and their secreted glycoproteins in nematode-bacteria interactions and offer a mechanistic basis for strategies to block such recognition processes.[1]


WikiGenes - Universities