The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Biofilms

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Biofilms

 

High impact information on Biofilms

  • Biofilm formation is associated with elevated synthesis of short-chain (C56-C68) fatty acids, and strains with altered mycolate profiles--including an InhA mutant resistant to the antituberculosis drug isoniazid and a strain overexpressing KasA--are defective in biofilm formation [6].
  • By chelating iron, lactoferrin stimulates twitching, a specialized form of surface motility, causing the bacteria to wander across the surface instead of forming cell clusters and biofilms [7].
  • We found that antibiotic-resistant phenotypic variants of P. aeruginosa with enhanced ability to form biofilms arise at high frequency both in vitro and in the lungs of CF patients [8].
  • We propose that this response is critical for the development of biofilm resistance to tobramycin [9].
  • Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria [10].
 

Chemical compound and disease context of Biofilms

 

Biological context of Biofilms

  • Because bacterial motility is often crucial for their survival in a natural environment and for systemic infection inside a host, the dependence for motility on PPK reveals important roles for poly P in diverse processes such as biofilm formation, symbiosis, and virulence [16].
  • Interestingly, rpfF mutants can still form in planta biofilms, which differ architecturally from biofilms in insects, suggesting that biofilm architecture, rather than a passive response to the environment, is actively determined by X. fastidiosa gene expression [17].
  • In this work, we demonstrate a role for the O-antigen polysaccharide of V. cholerae in Ca2+-dependent biofilm development in model and true sea water [18].
  • We report the isolation of insertional mutations to the pstC and pstA genes of the phosphate-specific transport (pst) operon that results in loss of biofilm formation by Pseudomonas aureofaciens PA147-2 [4].
  • Recent findings indicate that sigmaB also plays an important role in antibiotic resistance, pathogenesis and cellular differentiation processes such as biofilm formation and sporulation [19].
 

Anatomical context of Biofilms

  • Human leukocytes, in the presence of recombinant human IFN-gamma, killed biofilm bacteria lacking alginate after a 4-h challenge at 37 degrees C. Bacterial killing was dependent on the presence of IFN-gamma [20].
  • These data suggest that fleroxacin may be useful for treating catheter-related infections because these therapeutic dosages limited ascending infections of the urethra and bladder, eliminated catheter-associated biofilms, and killed planktonic bacteria in urine [5].
  • Mannose-resistant Proteus-like fimbriae are produced by most Proteus mirabilis strains infecting the urinary tract, dictate the in vivo localization of bacteria, and contribute to biofilm formation [21].
  • The effect of the beta-lactam antibiotic, amdinocillin, on the bacterial biofilm adherent to the Foley catheter surface, the bacterial microcolonies attached to the urinary bladder mucosa, and on planktonic bacteria in the urine was studied in a rabbit model of the closed urinary catheter drainage system [22].
  • With viability assays, biofilm formation assessment, and ethidium bromide uptake testing, farnesol was shown to inhibit biofilm formation and compromise cell membrane integrity [23].
 

Associations of Biofilms with chemical compounds

  • A specific signaling mutant, a lasI mutant, forms flat, undifferentiated biofilms that unlike wild-type biofilms are sensitive to the biocide sodium dodecyl sulfate [24].
  • Abundant, micrometer-scale, spherical aggregates of 2- to 5-nanometer-diameter sphalerite (ZnS) particles formed within natural biofilms dominated by relatively aerotolerant sulfate-reducing bacteria of the family Desulfobacteriaceae [10].
  • Late-onset infections of synthetic vascular grafts (LO-SVGIs) are generally caused by staphylococci that produce a slime polysaccharide and grow as a biofilm on the graft surface [25].
  • Biofilm formation on polystyrene and medical-grade silicone was examined [26].
  • Triclosan became impregnated throughout the silicone catheter material and completely inhibited the formation of crystalline biofilm, whereas catheters inflated with water became blocked in 24 h [27].
 

Gene context of Biofilms

  • Together, these experiments suggest that mucin, which may serve as an attachment surface in CF airways, impacts P. aeruginosa biofilm development and function [28].
  • The data obtained in these analyses suggested that in approximately 30% of the variants the missing biofilm formation was due to the inactivation of either the icaA or the icaC gene by the insertion of the insertion sequence element IS256 [29].
  • Biofilm formation is not regulated by csrA, csrB or uvrY in a DeltapgaC mutant, which cannot synthesize PGA [30].
  • Study of the isolated mutant strains allowed the identification of four genes involved in biofilm formation (RIF1, SIR4, EPA6 and YAK1) [31].
  • This result suggests that gene(s) within the Pho regulon act to regulate biofilm formation negatively in low-P(i) environments, and that phoR mutations uncouple PA147-2 from such regulatory constraints [4].
 

Analytical, diagnostic and therapeutic context of Biofilms

References

  1. Effect of vancomycin and rifampicin on meticillin-resistant Staphylococcus aureus biofilms. Jones, S.M., Morgan, M., Humphrey, T.J., Lappin-Scott, H. Lancet (2001) [Pubmed]
  2. Inorganic polyphosphate in Bacillus cereus: motility, biofilm formation, and sporulation. Shi, X., Rao, N.N., Kornberg, A. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  3. srf-3, a mutant of Caenorhabditis elegans, resistant to bacterial infection and to biofilm binding, is deficient in glycoconjugates. Cipollo, J.F., Awad, A.M., Costello, C.E., Hirschberg, C.B. J. Biol. Chem. (2004) [Pubmed]
  4. Expression of the Pho regulon negatively regulates biofilm formation by Pseudomonas aureofaciens PA147-2. Monds, R.D., Silby, M.W., Mahanty, H.K. Mol. Microbiol. (2001) [Pubmed]
  5. Therapeutic efficacy of fleroxacin for eliminating catheter-associated urinary tract infection in a rabbit model. Morck, D.W., Olson, M.E., McKay, S.G., Lam, K., Prosser, B., Cleeland, R., Costerton, J.W. Am. J. Med. (1993) [Pubmed]
  6. GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Ojha, A., Anand, M., Bhatt, A., Kremer, L., Jacobs, W.R., Hatfull, G.F. Cell (2005) [Pubmed]
  7. A component of innate immunity prevents bacterial biofilm development. Singh, P.K., Parsek, M.R., Greenberg, E.P., Welsh, M.J. Nature (2002) [Pubmed]
  8. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Drenkard, E., Ausubel, F.M. Nature (2002) [Pubmed]
  9. Gene expression in Pseudomonas aeruginosa biofilms. Whiteley, M., Bangera, M.G., Bumgarner, R.E., Parsek, M.R., Teitzel, G.M., Lory, S., Greenberg, E.P. Nature (2001) [Pubmed]
  10. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Labrenz, M., Druschel, G.K., Thomsen-Ebert, T., Gilbert, B., Welch, S.A., Kemner, K.M., Logan, G.A., Summons, R.E., De Stasio, G., Bond, P.L., Lai, B., Kelly, S.D., Banfield, J.F. Science (2000) [Pubmed]
  11. Bile acids stimulate biofilm formation in Vibrio cholerae. Hung, D.T., Zhu, J., Sturtevant, D., Mekalanos, J.J. Mol. Microbiol. (2006) [Pubmed]
  12. Genes for tight adherence of Actinobacillus actinomycetemcomitans: from plaque to plague to pond scum. Kachlany, S.C., Planet, P.J., DeSalle, R., Fine, D.H., Figurski, D.H. Trends Microbiol. (2001) [Pubmed]
  13. Bacterial biofilm within diseased pancreatic and biliary tracts. Swidsinski, A., Schlien, P., Pernthaler, A., Gottschalk, U., Bärlehner, E., Decker, G., Swidsinski, S., Strassburg, J., Loening-Baucke, V., Hoffmann, U., Seehofer, D., Hale, L.P., Lochs, H. Gut (2005) [Pubmed]
  14. Effects of glucose on fsr-mediated biofilm formation in Enterococcus faecalis. Pillai, S.K., Sakoulas, G., Eliopoulos, G.M., Moellering, R.C., Murray, B.E., Inouye, R.T. J. Infect. Dis. (2004) [Pubmed]
  15. Characterization of Tn917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Heilmann, C., Gerke, C., Perdreau-Remington, F., Götz, F. Infect. Immun. (1996) [Pubmed]
  16. Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Rashid, M.H., Kornberg, A. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  17. Cell-cell signaling controls Xylella fastidiosa interactions with both insects and plants. Newman, K.L., Almeida, R.P., Purcell, A.H., Lindow, S.E. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  18. The Vibrio cholerae O139 O-antigen polysaccharide is essential for Ca2+-dependent biofilm development in sea water. Kierek, K., Watnick, P.I. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  19. The role of sigmaB in the stress response of Gram-positive bacteria -- targets for food preservation and safety. van Schaik, W., Abee, T. Curr. Opin. Biotechnol. (2005) [Pubmed]
  20. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. Leid, J.G., Willson, C.J., Shirtliff, M.E., Hassett, D.J., Parsek, M.R., Jeffers, A.K. J. Immunol. (2005) [Pubmed]
  21. Mannose-resistant Proteus-like fimbriae are produced by most Proteus mirabilis strains infecting the urinary tract, dictate the in vivo localization of bacteria, and contribute to biofilm formation. Jansen, A.M., Lockatell, V., Johnson, D.E., Mobley, H.L. Infect. Immun. (2004) [Pubmed]
  22. Amdinocillin treatment of catheter-associated bacteriuria in rabbits. Olson, M.E., Nickel, J.C., Khoury, A.E., Morck, D.W., Cleeland, R., Costerton, J.W. J. Infect. Dis. (1989) [Pubmed]
  23. Effect of Farnesol on Staphylococcus aureus Biofilm Formation and Antimicrobial Susceptibility. Jabra-Rizk, M.A., Meiller, T.F., James, C.E., Shirtliff, M.E. Antimicrob. Agents Chemother. (2006) [Pubmed]
  24. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Davies, D.G., Parsek, M.R., Pearson, J.P., Iglewski, B.H., Costerton, J.W., Greenberg, E.P. Science (1998) [Pubmed]
  25. Diagnosis of vascular graft infections with antibodies against staphylococcal slime antigens. Selan, L., Passariello, C., Rizzo, L., Varesi, P., Speziale, F., Renzini, G., Thaller, M.C., Fiorani, P., Rossolini, G.M. Lancet (2002) [Pubmed]
  26. Stimulation of Staphylococcus epidermidis growth and biofilm formation by catecholamine inotropes. Lyte, M., Freestone, P.P., Neal, C.P., Olson, B.A., Haigh, R.D., Bayston, R., Williams, P.H. Lancet (2003) [Pubmed]
  27. Control of encrustation and blockage of Foley catheters. Stickler, D.J., Jones, G.L., Russell, A.D. Lancet (2003) [Pubmed]
  28. Mucin-Pseudomonas aeruginosa interactions promote biofilm formation and antibiotic resistance. Landry, R.M., An, D., Hupp, J.T., Singh, P.K., Parsek, M.R. Mol. Microbiol. (2006) [Pubmed]
  29. A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Ziebuhr, W., Krimmer, V., Rachid, S., Lössner, I., Götz, F., Hacker, J. Mol. Microbiol. (1999) [Pubmed]
  30. CsrA post-transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli. Wang, X., Dubey, A.K., Suzuki, K., Baker, C.S., Babitzke, P., Romeo, T. Mol. Microbiol. (2005) [Pubmed]
  31. The Yak1p kinase controls expression of adhesins and biofilm formation in Candida glabrata in a Sir4p-dependent pathway. Iraqui, I., Garcia-Sanchez, S., Aubert, S., Dromer, F., Ghigo, J.M., d'Enfert, C., Janbon, G. Mol. Microbiol. (2005) [Pubmed]
  32. Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Parkins, M.D., Ceri, H., Storey, D.G. Mol. Microbiol. (2001) [Pubmed]
  33. Common beta-lactamases inhibit bacterial biofilm formation. Gallant, C.V., Daniels, C., Leung, J.M., Ghosh, A.S., Young, K.D., Kotra, L.P., Burrows, L.L. Mol. Microbiol. (2005) [Pubmed]
  34. cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. Cao, Y.Y., Cao, Y.B., Xu, Z., Ying, K., Li, Y., Xie, Y., Zhu, Z.Y., Chen, W.S., Jiang, Y.Y. Antimicrob. Agents Chemother. (2005) [Pubmed]
  35. Biofilm Formation by Neisseria gonorrhoeae. Greiner, L.L., Edwards, J.L., Shao, J., Rabinak, C., Entz, D., Apicella, M.A. Infect. Immun. (2005) [Pubmed]
  36. Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Mukherjee, P.K., Chandra, J., Kuhn, D.M., Ghannoum, M.A. Infect. Immun. (2003) [Pubmed]
 
WikiGenes - Universities