The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

ATP binding cassette multidrug transporters limit the anti-HIV activity of zidovudine and indinavir in infected human macrophages.

OBJECTIVES: To investigate whether P-glycoprotein (P-gp) and multidrug resistance proteins (MRPs), which limit the bioavailability of HIV protease inhibitors (PIs) and nucleoside reverse transcriptase inhibitors (NRTIs), modulate the anti-HIV activity of NRTIs, non-NRTIs and PIs in vitro. DESIGN: We used primary cultures of major HIV target cells: human monocyte-derived macrophages (MDMs) and lymphocytes. METHODS: P-gp and MRP expression in response to long-term zidovudine (3'-azido-3'-deoxythymidine; AZT) or indinavir treatment was quantified by RT-PCR. MDM and lymphocytes were infected in vitro with HIV-1/Ba-L and HIV-1-LAI, respectively, and treated with antiretroviral drugs. We evaluated the activity of these drugs in combination with PSC833, a P-gp inhibitor, and/or probenecid, an MRP1 inhibitor. Intracellular AZT triphosphate derivative (AZT-TP) was quantified by HPLC-MSMS. P-gp ATPase activity was measured with inside-out native membrane vesicles enriched in P-gp. RESULTS: Levels of MDR1, mrp4 and mrp5 mRNA were high following AZT treatment. In infected MDM, PSC833 and probenecid increased the anti-HIV activity of AZT and indinavir. AZT (5 nM) decreased HIV replication by 34% alone and by 72% in combination with P-gp/ MRP inhibitors. Indinavir (10 nM) gave 14% inhibition alone and 81% in combination. The increase in anti-HIV activity of AZT was correlated with an increase in intracellular AZT-TP concentration. However, unlike PIs, neither AZT nor its metabolites interacted with P-gp. CONCLUSION: AZT increases the expression of multidrug transporters, thereby decreasing its pharmacological activity. The cellular efflux of AZT probably involves MRP4 or MRP5. In contrast, increases in indinavir anti-HIV activity require the inhibition of both P-gp and MRP1.[1]

References

  1. ATP binding cassette multidrug transporters limit the anti-HIV activity of zidovudine and indinavir in infected human macrophages. Jorajuria, S., Dereuddre-Bosquet, N., Becher, F., Martin, S., Porcheray, F., Garrigues, A., Mabondzo, A., Benech, H., Grassi, J., Orlowski, S., Dormont, D., Clayette, P. Antivir. Ther. (Lond.) (2004) [Pubmed]
 
WikiGenes - Universities