The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Controlling the regiospecific oxidation of aromatics via active site engineering of toluene para-monooxygenase of Ralstonia pickettii PKO1.

A primary goal of protein engineering is to control catalytic activity. Here we show that through mutagenesis of three active site residues, the catalytic activity of a multicomponent monooxygenase is altered so that it hydroxylates all three positions of toluene as well as both positions of naphthalene. Hence, for the first time, an enzyme has been engineered so that its regiospecific oxidation of a substrate can be controlled. Through the A107G mutation in the alpha-subunit of toluene para-monooxygenase, a variant was formed that hydroxylated toluene primarily at the ortho-position while converting naphthalene to 1-naphthol. Conversely, the A107T variant produced >98% p-cresol and p-nitrophenol from toluene and nitrobenzene, respectively, as well as produced 2-naphthol from naphthalene. The mutation I100S/G103S produced a toluene para-monooxygenase variant that formed 75% m-cresol from toluene and 100% m-nitrophenol from nitrobenzene; thus, for the first time a true meta-hydroxylating toluene monooxygenase was created.[1]


WikiGenes - Universities