The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Cresols     4-methylphenol

Synonyms: Tricresol, Paracresol, P-CRESOL, p-Kresol, p-Toluol, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of p-Cresylic acid

 

Psychiatry related information on p-Cresylic acid

 

High impact information on p-Cresylic acid

  • Subunit interactions change the heme active-site geometry in p-cresol methylhydroxylase [6].
  • The enzyme p-cresol methylhydroxylase [4-cresol: (acceptor) oxidoreductase (methyl-hydroxylating), EC 1.17.99.1] contains two subunits: a cytochrome c (electron transfer) subunit (cytochrome cpc) and a flavin (catalytic) subunit [6].
  • Steady-state kinetic analyses carried out at pH 7.0 showed significant increases in the apparent Km for guaiacol, p-cresol, and 2, 2'-azinobis(3-ethylbenzothiazolinesulfonic acid) (ABTS) [7].
  • The cytochrome subunit is necessary for covalent FAD attachment to the flavoprotein subunit of p-cresol methylhydroxylase [8].
  • However, the amino acid sequence is closer to Paracoccus sp. cytochrome c554(548) (37%) than it is to the heme subunit from Pseudomonas putida p-cresol methylhydroxylase flavocytochrome c (20%) [9].
 

Chemical compound and disease context of p-Cresylic acid

 

Biological context of p-Cresylic acid

  • The reactions of MnPI and MnPII with p-cresol strictly obeyed second-order kinetics [14].
  • The omission of T4moD causes an approximately 20-fold decrease in hydroxylation rate, nearly complete uncoupling, and a decrease in regiospecificity so that p-cresol represents approximately 60% of total products [15].
  • CONCLUSION: During peritoneal dialysis p-cresol behaves like beta2m, probably due to its protein binding [16].
  • Among the compounds studied, only p-cresol depressed whole blood respiratory burst reactivity (G1C-U, CL-P) dose dependently at concentrations currently encountered in end-stage renal disease (ESRD) (P < 0.05 from 5 micrograms/ml on) [17].
  • Uric acid (7 mg/dL), indoxyl sulfate (5 mg/dL) and p-cresol (1.4 mg/dL), which coeluted with F1, F2 and F4, respectively, did not interfere with the inhibitory action of CTR 10-7 mol/L; however, the addition of phenol (0.14 mg/dL), which coeluted with F3, prevented the CTR-induced inhibition of parathyroid cell proliferation [18].
 

Anatomical context of p-Cresylic acid

  • Under all treatments, p-cresol was the predominant metabolite of the volatile phenolic and aromatic metabolites detected in feces and urine, with the urine accounting for 88% of its total daily excretion [4].
  • Results from studies on patients with ileostomy, colostomy, and diverticular disease indicated that p-cresol is largely produced by the anaerobic flora of the left colon while phenol was produced in the ileum (when colonized) and cecum [5].
  • We asked whether p-cresol alters endothelial adhesion molecule expression and modifies endothelial/leukocyte adhesion [19].
  • In this study, we investigated the in vitro effect of the uremic retention solute p-cresol on the barrier function of endothelial cells (HUVEC) [20].
  • Mechanisms of uremic inhibition of phagocyte reactive species production: characterization of the role of p-cresol [17].
 

Associations of p-Cresylic acid with other chemical compounds

 

Gene context of p-Cresylic acid

  • In addition, CYP2B6 and CYP2E1 catalyzed the formation of p-cresol (11-12% of total metabolites), and CYP1A2 catalyzed the formation of both o-(22%) and p-cresol (35%) [25].
  • Extensive pulegone metabolism generated p-cresol that was a glutathione depletory, and the furan ring of the diterpenoids in germander was oxidized by CYP3A4 to reactive epoxide which reacts with proteins such as CYP3A and epoxide hydrolase [26].
  • METHODS: Human umbilical vein endothelial cells (HUVEC) were incubated with p-cresol in the presence or absence of tumor necrosis factor (TNF) or interleukin-1beta (IL-1beta) [19].
  • A sequence in the 3' non-coding region of Vibrio hollisae thermostable hemolysin gene that is highly homologous with a similar located sequence in the Pseudomonas putida p-cresol methylhydroxylase gene is also found in the 3' non-coding region of the degS homolog gene of the PPA2 [27].
  • The mechanisms by which urinary p-cresol sulfate, possibly derived from tyrosine-SO(4), reflects progressive worsening that is disabling in MS are unknown [28].
 

Analytical, diagnostic and therapeutic context of p-Cresylic acid

References

  1. Covalent structure of the diheme cytochrome subunit and amino-terminal sequence of the flavoprotein subunit of flavocytochrome c from Chromatium vinosum. Van Beeumen, J.J., Demol, H., Samyn, B., Bartsch, R.G., Meyer, T.E., Dolata, M.M., Cusanovich, M.A. J. Biol. Chem. (1991) [Pubmed]
  2. P-Cresol, a uremic compound, enhances the uptake of aluminum in hepatocytes. Abreo, K., Sella, M., Gautreaux, S., De Smet, R., Vogeleere, P., Ringoir, S., Vanholder, R. J. Am. Soc. Nephrol. (1997) [Pubmed]
  3. Impairment of small intestinal protein assimilation in patients with end-stage renal disease: extending the malnutrition-inflammation-atherosclerosis concept. Bammens, B., Evenepoel, P., Verbeke, K., Vanrenterghem, Y. Am. J. Clin. Nutr. (2004) [Pubmed]
  4. The effects of antibiotics in the weanling pig diet on growth and the excretion of volatile phenolic and aromatic bacterial metabolites. Yokoyama, M.T., Tabori, C., Miller, E.R., Hogberg, M.G. Am. J. Clin. Nutr. (1982) [Pubmed]
  5. The production of urinary phenols by gut bacteria and their possible role in the causation of large bowel cancer. Bone, E., Tamm, A., Hill, M. Am. J. Clin. Nutr. (1976) [Pubmed]
  6. Subunit interactions change the heme active-site geometry in p-cresol methylhydroxylase. McLendon, G.L., Bagby, S., Charman, J.A., Driscoll, P.C., McIntire, W.S., Mathews, F.S., Hill, H.A. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  7. Role of arginine 38 in horseradish peroxidase. A critical residue for substrate binding and catalysis. Rodriguez-Lopez, J.N., Smith, A.T., Thorneley, R.N. J. Biol. Chem. (1996) [Pubmed]
  8. The cytochrome subunit is necessary for covalent FAD attachment to the flavoprotein subunit of p-cresol methylhydroxylase. Kim, J., Fuller, J.H., Kuusk, V., Cunane, L., Chen, Z.W., Mathews, F.S., McIntire, W.S. J. Biol. Chem. (1995) [Pubmed]
  9. Complete amino acid sequence of the cytochrome subunit and amino-terminal sequence of the flavin subunit of flavocytochrome c (sulfide dehydrogenase) from Chlorobium thiosulfatophilum. Van Beeumen, J., Van Bun, S., Meyer, T.E., Bartsch, R.G., Cusanovich, M.A. J. Biol. Chem. (1990) [Pubmed]
  10. Comparative kinetics of the uremic toxin p-cresol versus creatinine in rats with and without renal failure. Lesaffer, G., De Smet, R., D'Heuvaert, T., Belpaire, F.M., Lameire, N., Vanholder, R. Kidney Int. (2003) [Pubmed]
  11. P-cresol and 3,5-xylenol methylhydroxylases in Pseudomonas putida N.C.I.B. 9896. Keat, M.J., Hopper, D.J. Biochem. J. (1978) [Pubmed]
  12. The aromatic alcohol dehydrogenases in Pseudomonas putida N.C.I.B. 9869 grown on 3,5-xylenol and p-cresol. Keat, M.J., Hopper, D.J. Biochem. J. (1978) [Pubmed]
  13. p-Cresol methylhydroxylase. Assay and general properties. McIntire, W., Hopper, D.J., Singer, T.P. Biochem. J. (1985) [Pubmed]
  14. Manganese peroxidase from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Transient state kinetics and reaction mechanism. Wariishi, H., Dunford, H.B., MacDonald, I.D., Gold, M.H. J. Biol. Chem. (1989) [Pubmed]
  15. Combined participation of hydroxylase active site residues and effector protein binding in a para to ortho modulation of toluene 4-monooxygenase regiospecificity. Mitchell, K.H., Studts, J.M., Fox, B.G. Biochemistry (2002) [Pubmed]
  16. Removal of middle molecules and protein-bound solutes by peritoneal dialysis and relation with uremic symptoms. Bammens, B., Evenepoel, P., Verbeke, K., Vanrenterghem, Y. Kidney Int. (2003) [Pubmed]
  17. Mechanisms of uremic inhibition of phagocyte reactive species production: characterization of the role of p-cresol. Vanholder, R., De Smet, R., Waterloos, M.A., Van Landschoot, N., Vogeleere, P., Hoste, E., Ringoir, S. Kidney Int. (1995) [Pubmed]
  18. Effects of uremic ultrafiltrate on the regulation of the parathyroid cell cycle by calcitriol. Canalejo, A., Almadén, Y., De Smet, R., Glorieux, G., Garfia, B., Luque, F., Vanholder, R., Rodríguez, M. Kidney Int. (2003) [Pubmed]
  19. P-cresol, a uremic toxin, decreases endothelial cell response to inflammatory cytokines. Dou, L., Cerini, C., Brunet, P., Guilianelli, C., Moal, V., Grau, G., De Smet, R., Vanholder, R., Sampol, J., Berland, Y. Kidney Int. (2002) [Pubmed]
  20. P-cresol, a uremic retention solute, alters the endothelial barrier function in vitro. Cerini, C., Dou, L., Anfosso, F., Sabatier, F., Moal, V., Glorieux, G., De Smet, R., Vanholder, R., Dignat-George, F., Sampol, J., Berland, Y., Brunet, P. Thromb. Haemost. (2004) [Pubmed]
  21. Removal of P-cresol sulfate by hemodialysis. Martinez, A.W., Recht, N.S., Hostetter, T.H., Meyer, T.W. J. Am. Soc. Nephrol. (2005) [Pubmed]
  22. Modeling the active site of cytochrome oxidase: synthesis and characterization of a cross-linked histidine-phenol. Cappuccio, J.A., Ayala, I., Elliott, G.I., Szundi, I., Lewis, J., Konopelski, J.P., Barry, B.A., Einarsdóttir, O. J. Am. Chem. Soc. (2002) [Pubmed]
  23. Voltage-dependent inhibition of RCK1 K+ channels by phenol, p-cresol, and benzyl alcohol. Elliott, A.A., Elliott, J.R. Mol. Pharmacol. (1997) [Pubmed]
  24. Remarkable aliphatic hydroxylation by the diiron enzyme toluene 4-monooxygenase in reactions with radical or cation diagnostic probes norcarane, 1,1-dimethylcyclopropane, and 1,1-diethylcyclopropane. Moe, L.A., Hu, Z., Deng, D., Austin, R.N., Groves, J.T., Fox, B.G. Biochemistry (2004) [Pubmed]
  25. Toluene metabolism by cDNA-expressed human hepatic cytochrome P450. Nakajima, T., Wang, R.S., Elovaara, E., Gonzalez, F.J., Gelboin, H.V., Raunio, H., Pelkonen, O., Vainio, H., Aoyama, T. Biochem. Pharmacol. (1997) [Pubmed]
  26. Herbal bioactivation: the good, the bad and the ugly. Zhou, S., Koh, H.L., Gao, Y., Gong, Z.Y., Lee, E.J. Life Sci. (2004) [Pubmed]
  27. Identification of major antigenic proteins of Pasteurella piscicida. Hirono, I., Kato, M., Aoki, T. Microb. Pathog. (1997) [Pubmed]
  28. p-Cresol sulfate is the dominant component of urinary myelin basic protein like material. Cao, L., Kirk, M.C., Coward, L.U., Jackson, P., Whitaker, J.N. Arch. Biochem. Biophys. (2000) [Pubmed]
  29. Phenol and p-cresol accumulated in uremic serum measured by HPLC with fluorescence detection. Niwa, T. Clin. Chem. (1993) [Pubmed]
  30. Superior dialytic clearance of beta(2)-microglobulin and p-cresol by high-flux hemodialysis as compared to peritoneal dialysis. Evenepoel, P., Bammens, B., Verbeke, K., Vanrenterghem, Y. Kidney Int. (2006) [Pubmed]
 
WikiGenes - Universities