The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Alternative substrates for wild-type and L109A E. coli CTP synthases: kinetic evidence for a constricted ammonia tunnel.

Cytidine 5'-triphosphate (CTP) synthase catalyses the ATP-dependent formation of CTP from uridine 5'-triphosphate using either NH(3) or l-glutamine as the nitrogen source. The hydrolysis of glutamine is catalysed in the C-terminal glutamine amide transfer domain and the nascent NH(3) that is generated is transferred via an NH(3) tunnel [Endrizzi, J.A., Kim, H., Anderson, P.M. & Baldwin, E.P. (2004) Biochemistry43, 6447-6463] to the active site of the N-terminal synthase domain where the amination reaction occurs. Replacement of Leu109 by alanine in Escherichia coli CTP synthase causes an uncoupling of glutamine hydrolysis and glutamine-dependent CTP formation [Iyengar, A. & Bearne, S.L. (2003) Biochem. J.369, 497-507]. To test our hypothesis that L109A CTP synthase has a constricted or a leaky NH(3) tunnel, we examined the ability of wild-type and L109A CTP synthases to utilize NH(3), NH(2)OH, and NH(2)NH(2) as exogenous substrates, and as nascent substrates generated via the hydrolysis of glutamine, gamma-glutamyl hydroxamate, and gamma-glutamyl hydrazide, respectively. We show that the uncoupling of the hydrolysis of gamma-glutamyl hydroxamate and nascent NH(2)OH production from N(4)-hydroxy-CTP formation is more pronounced with the L109A enzyme, relative to the wild-type CTP synthase. These results suggest that the NH(3) tunnel of L109A, in the presence of bound allosteric effector guanosine 5'-triphosphate, is not leaky but contains a constriction that discriminates between NH(3) and NH(2)OH on the basis of size.[1]

References

 
WikiGenes - Universities