The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Organization and sequence of photosynthetic genes from the plastid genome of the holoparasitic flowering plant Cuscuta reflexa.

We have cloned and sequenced an area of about 6 kb of the plastid DNA (ptDNA) from the holoparasitic plant Cuscuta reflexa. This region contains (in the following order) genes for the cytochrome b6 f-complex subunit V ( petG), tRNA(Val) ( trnV), tRNA(Met) (trnM), the epsilon- and beta-subunit of the chloroplast ATP-synthase (atpE and atpB) and the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; rbcL). In addition we identified other photosynthesis-related genes (atpA, petB, psaA, psbA, psbB, psbC, and psbD) in C. reflexa by heterologous hybridization. The gene arrangement of the sequenced area is, except for the petG gene, the same as in ptDNAs of other higher plants (e.g. Nicotiana tabacum). Sequence homologies between the Cuscuta genes and corresponding genes from higher plants are in the range of 90%. The only significant difference is that the rbcL gene of C. reflexa encodes a polypeptide which is 18-23 amino acids longer than in other higher plants. This is remarkable since C. reflexa has lost its ability to grow photoautotrophically. The transcript level of the rbcL gene, however, is strongly reduced as compared to tobacco. These findings are compatible with results from Western blotting analysis, where no Rubisco large subunit was detectable, and with the lack of Rubisco activity in crude extracts of C. reflexa.[1]

References

 
WikiGenes - Universities