The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Gene Order

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Gene Order


High impact information on Gene Order

  • Multipoint linkage analysis indicated that the following was the most likely gene order: the centromere, the gene for familial Mediterranean fever, D16S84, hemoglobin alpha, and the telomere [6].
  • We discuss the possibility that this gene arrangement has regulatory consequences for the expression of tonB [7].
  • This hypothesis inevitably postulates the gene order 5'-gamma 1-gamma 3-psi gamma-3'. Cloning of overlapping chromosomal segments demonstrates that the gamma 2 gene is located 19 kb 5' to the gamma 4 gene [8].
  • Our results demonstrate close physical linkage between FSHB and the WAGR locus, suggest a gene order for the four deleted markers and exclude other markers tested from this region [9].
  • MHC gene organization (size, complexity, gene order) differs markedly among different species, and yet all nonmammalian vertebrates examined to date have a true "class I region" with tight linkage of genes encoding the class I presenting and processing molecules [10].

Chemical compound and disease context of Gene Order


Biological context of Gene Order

  • We have now established the gene order and gene-polypeptide relationships of the unc operon [15].
  • The relative gene order of cFOS, S31iii125, and S20i15 was the same in both genomes, but in Fugu these three genes lay within a 12.4-kb region, compared to >600 kb in the human AD3 locus [16].
  • At the levels of gene content (124 genes), intron composition (18 introns), and gene order, Chaetosphaeridium cpDNA is remarkably similar to land-plant cpDNAs, implying that most of the features characteristic of land-plant lineages were gained during the evolution of charophytes [17].
  • We established the linkage relationship between the prion gene complex (Prn) and other chromosome 2 genes; the gene order, proximal to distal, is B2m-II-1a-Prn-Itp-A [18].
  • These results indicate that distance from the LCR, an inherent property of spatial gene order, is a major determinant of temporal gene expression during development [19].

Anatomical context of Gene Order


Associations of Gene Order with chemical compounds

  • Analysis of five genes within this syntenic segment of both species revealed striking conservation of gene order, intergenic distance and, to a lesser extent, CpG dinucleotides [24].
  • Our evidence suggests that these genes encode delta (L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACVS) and acyl transferase (ACYT) (designated acvA and acyA respectively), the first and third enzymes required for penicillin biosynthesis, with the gene order being acvA-ipnA-acyA [25].
  • The linear arrangement of P60 CNBr fragments gave the gene order of NH2-p15-p12-p30-COOH [26].
  • RAD5 also contains a cysteine-rich sequence motif that resembles the corresponding sequences found in 11 other proteins, including those encoded by the DNA repair gene RAD18 and the RAG1 gene required for immunoglobin gene arrangement [27].
  • The four genes form an scr operon (gene order, scrK scrY scrA scrB, transcription from K to B), regulated by a repressor (gene scrR, 37 kD) and inducible by sucrose, fructose and fructose-containing oligosaccharides [28].

Gene context of Gene Order


Analytical, diagnostic and therapeutic context of Gene Order


  1. Structure and evolution of a multidomain multiphosphoryl transfer protein. Nucleotide sequence of the fruB(HI) gene in Rhodobacter capsulatus and comparisons with homologous genes from other organisms. Wu, L.F., Tomich, J.M., Saier, M.H. J. Mol. Biol. (1990) [Pubmed]
  2. Altered growth characteristics of recombinant respiratory syncytial viruses which do not produce NS2 protein. Teng, M.N., Collins, P.L. J. Virol. (1999) [Pubmed]
  3. Sequence variability, gene structure, and expression of full-length human endogenous retrovirus H. Jern, P., Sperber, G.O., Ahlsén, G., Blomberg, J. J. Virol. (2005) [Pubmed]
  4. The pheA/tyrA/aroF region from Erwinia herbicola: an emerging comparative basis for analysis of gene organization and regulation in enteric bacteria. Xia, T., Zhao, G., Jensen, R.A. J. Mol. Evol. (1993) [Pubmed]
  5. The genome sequence and evolution of baculoviruses. Herniou, E.A., Olszewski, J.A., Cory, J.S., O'Reilly, D.R. Annu. Rev. Entomol. (2003) [Pubmed]
  6. Mapping of a gene causing familial Mediterranean fever to the short arm of chromosome 16. Pras, E., Aksentijevich, I., Gruberg, L., Balow, J.E., Prosen, L., Dean, M., Steinberg, A.D., Pras, M., Kastner, D.L. N. Engl. J. Med. (1992) [Pubmed]
  7. A bidirectional rho-independent transcription terminator between the E. coli tonB gene and an opposing gene. Postle, K., Good, R.F. Cell (1985) [Pubmed]
  8. Structure of human immunoglobulin gamma genes: implications for evolution of a gene family. Takahashi, N., Ueda, S., Obata, M., Nikaido, T., Nakai, S., Honjo, T. Cell (1982) [Pubmed]
  9. The beta-subunit of follicle-stimulating hormone is deleted in patients with aniridia and Wilms' tumour, allowing a further definition of the WAGR locus. Glaser, T., Lewis, W.H., Bruns, G.A., Watkins, P.C., Rogler, C.E., Shows, T.B., Powers, V.E., Willard, H.F., Goguen, J.M., Simola, K.O. Nature (1986) [Pubmed]
  10. Comparative genomics of the MHC: glimpses into the evolution of the adaptive immune system. Flajnik, M.F., Kasahara, M. Immunity (2001) [Pubmed]
  11. Theiler's virus-specified polypeptides made in BHK-21 cells. Lipton, H.L., Rozhon, E.J., Black, D. J. Gen. Virol. (1984) [Pubmed]
  12. Gene sequence encoding early enzymes of arginine synthesis within a cluster in Bacillus subtilis, as revealed by cloning in Escherichia coli. Mountain, A., McChesney, J., Smith, M.C., Baumberg, S. J. Bacteriol. (1986) [Pubmed]
  13. Mutation affecting the thermolability of the 50S ribosomal subunit in Escherichia coli. Ono, M., Kuwano, M. J. Bacteriol. (1978) [Pubmed]
  14. Molecular genetics of a receptor protein for D-xylose, encoded by the gene xylF, in Escherichia coli. Sumiya, M., Davis, E.O., Packman, L.C., McDonald, T.P., Henderson, P.J. Recept. Channels (1995) [Pubmed]
  15. Gene order and gene-polypeptide relationships of the proton-translocating ATPase operon (unc) of Escherichia coli. Gunsalus, R.P., Brusilow, W.S., Simoni, R.D. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  16. Conservation of synteny between the genome of the pufferfish (Fugu rubripes) and the region on human chromosome 14 (14q24.3) associated with familial Alzheimer disease (AD3 locus). Trower, M.K., Orton, S.M., Purvis, I.J., Sanseau, P., Riley, J., Christodoulou, C., Burt, D., See, C.G., Elgar, G., Sherrington, R., Rogaev, E.I., St George-Hyslop, P., Brenner, S., Dykes, C.W. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  17. The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum: insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants. Turmel, M., Otis, C., Lemieux, C. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  18. Genetics and polymorphism of the mouse prion gene complex: control of scrapie incubation time. Carlson, G.A., Goodman, P.A., Lovett, M., Taylor, B.A., Marshall, S.T., Peterson-Torchia, M., Westaway, D., Prusiner, S.B. Mol. Cell. Biol. (1988) [Pubmed]
  19. Genome architecture of the human beta-globin locus affects developmental regulation of gene expression. Harju, S., Navas, P.A., Stamatoyannopoulos, G., Peterson, K.R. Mol. Cell. Biol. (2005) [Pubmed]
  20. T cell regulation of immunoglobulin class expression in the antibody response to trinitrophenyl-ficoll. Evidence for T cell enhancement of the immunoglobulin class switch. Mongini, P.K., Paul, W.E., Metcalf, E.S. J. Exp. Med. (1982) [Pubmed]
  21. Transcription factors, translocations, and leukemia. Nichols, J., Nimer, S.D. Blood (1992) [Pubmed]
  22. Lupin nad9 and nad6 genes and their expression: 5' termini of the nad9 gene transcripts differentiate lupin species. Rurek, M., Nuc, K., Raczyńska, K.D., Augustyniak, H. Gene (2003) [Pubmed]
  23. Molecular cloning and expression analysis of five novel genes in chromosome 1p36. Onyango, P., Lubyova, B., Gardellin, P., Kurzbauer, R., Weith, A. Genomics (1998) [Pubmed]
  24. A 6000 kb segment of chromosome 1 is conserved in human and mouse. Kingsmore, S.F., Watson, M.L., Howard, T.A., Seldin, M.F. EMBO J. (1989) [Pubmed]
  25. The Aspergillus nidulans npeA locus consists of three contiguous genes required for penicillin biosynthesis. MacCabe, A.P., Riach, M.B., Unkles, S.E., Kinghorn, J.R. EMBO J. (1990) [Pubmed]
  26. Chemical determination of the m1 Moloney sarcoma virus pP60gag gene order: evidence for unique peptides in the carboxy terminus of the polyprotein. Oskarsson, M.K., Elder, J.H., Gautsch, J.W., Lerner, R.A., Vande Woude, G.F. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  27. Saccharomyces cerevisiae RAD5-encoded DNA repair protein contains DNA helicase and zinc-binding sequence motifs and affects the stability of simple repetitive sequences in the genome. Johnson, R.E., Henderson, S.T., Petes, T.D., Prakash, S., Bankmann, M., Prakash, L. Mol. Cell. Biol. (1992) [Pubmed]
  28. Plasmid-mediated sucrose metabolism in Escherichia coli K12: mapping of the scr genes of pUR400. Schmid, K., Ebner, R., Altenbuchner, J., Schmitt, R., Lengeler, J.W. Mol. Microbiol. (1988) [Pubmed]
  29. Human X-Linked genes regionally mapped utilizing X-autosome translocations and somatic cell hybrids. Shows, T.B., Brown, J.A. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  30. Linkage mapping of a mouse gene, iv, that controls left-right asymmetry of the heart and viscera. Brueckner, M., D'Eustachio, P., Horwich, A.L. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  31. Physical mapping, amplification, and overexpression of the mouse mdr gene family in multidrug-resistant cells. Raymond, M., Rose, E., Housman, D.E., Gros, P. Mol. Cell. Biol. (1990) [Pubmed]
  32. Physical and comparative mapping of distal mouse chromosome 16. 5 p5. Cabin, D.E., McKee-Johnson, J.W., Matesic, L.E., Wiltshire, T., Rue, E.E., Mjaatvedt, A.E., Huo, Y.K., Korenberg, J.R., Reeves, R.H. Genome Res. (1998) [Pubmed]
  33. The MHC of the duck (Anas platyrhynchos) contains five differentially expressed class I genes. Moon, D.A., Veniamin, S.M., Parks-Dely, J.A., Magor, K.E. J. Immunol. (2005) [Pubmed]
  34. CobB, a new member of the SIR2 family of eucaryotic regulatory proteins, is required to compensate for the lack of nicotinate mononucleotide:5,6-dimethylbenzimidazole phosphoribosyltransferase activity in cobT mutants during cobalamin biosynthesis in Salmonella typhimurium LT2. Tsang, A.W., Escalante-Semerena, J.C. J. Biol. Chem. (1998) [Pubmed]
  35. Sequential partially overlapping gene arrangement in the tricistronic S1 genome segments of avian reovirus and Nelson Bay reovirus: implications for translation initiation. Shmulevitz, M., Yameen, Z., Dawe, S., Shou, J., O'Hara, D., Holmes, I., Duncan, R. J. Virol. (2002) [Pubmed]
  36. Evolution of vertebrate genes related to prion and Shadoo proteins--clues from comparative genomic analysis. Premzl, M., Gready, J.E., Jermiin, L.S., Simonic, T., Marshall Graves, J.A. Mol. Biol. Evol. (2004) [Pubmed]
  37. Organization of the human SP-A and SP-D loci at 10q22-q23. Physical and radiation hybrid mapping reveal gene order and orientation. Hoover, R.R., Floros, J. Am. J. Respir. Cell Mol. Biol. (1998) [Pubmed]
  38. A polymorphism of the osteopontin gene is related to urinary calcium stones. Gao, B., Yasui, T., Okada, A., Tozawa, K., Hayashi, Y., Kohri, K. J. Urol. (2005) [Pubmed]
WikiGenes - Universities