The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Competition of electrons to enter the respiratory chain: a new regulatory mechanism of oxidative metabolism in Saccharomyces cerevisiae.

In the yeast Saccharomyces cerevisiae, the most important systems for conveying excess cytosolic NADH to the mitochondrial respiratory chain are the external NADH dehydrogenases (Nde1p and Nde2p) and the glycerol-3-phosphate dehydrogenase shuttle. In the latter system, NADH is oxidized to NAD+ and dihydroxyacetone phosphate is reduced to glycerol 3-phosphate by the cytosolic Gpd1p. Subsequently, glycerol 3-phosphate donates electrons to the respiratory chain via mitochondrial glycerol-3-phosphate dehydrogenase (Gut2p). At saturating concentrations of NADH, the activation of external NADH dehydrogenases completely inhibits glycerol 3-phosphate oxidation. Studies on the functionally isolated enzymes demonstrated that neither Nde1p nor Nde2p directly inhibits Gut2p. Thus, the inhibition of glycerol 3-phosphate oxidation may be caused by competition for the entrance of electrons into the respiratory chain. Using single deletion mutants of Nde1p or Nde2p, we have shown that glycerol 3-phosphate oxidation via Gut2p is inhibited fully when NADH is oxidized via Nde1p, whereas only 50% of glycerol 3-phosphate oxidation is inhibited when Nde2p is functioning. By comparing respiratory rates with different respiratory substrates, we show that electrons from Nde1p are favored over electrons coming from Ndip (internal NADH dehydrogenase) and that when electrons come from either Nde1p or Nde2p and succinodehydrogenase, their use by the respiratory chain is shared to a comparable extent. This suggests a very specific competition for electron entrance into the respiratory chain, which may be caused by the supramolecular organization of the respiratory chain. The physiological consequences of such regulation are discussed.[1]

References

 
WikiGenes - Universities