The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Purine nucleoside phosphorylase. Kinetic mechanism of the enzyme from calf spleen.

Ribose 1-phosphate, phosphate, and acyclovir diphosphate quenched the fluorescence of purine nucleoside phosphorylase at pH 7.1 and 25 degrees C. The fluorescence of enzyme-bound guanine was similar to that of anionic guanine in ethanol. Guanine and ribose 1-phosphate bound to free enzyme, whereas inosine and guanosine were not bound to free enzyme in the absence of phosphate. Thus, synthesis proceeded by a random mechanism, and phosphorolysis proceeded by an ordered mechanism. Steady-state kinetic data for the phosphorolysis of 100 microM guanosine were fitted to a bifunctional kinetic model with catalytic rate constants of 22 and 1.3 s-1. The dissociation rate constants for guanine from the enzyme-guanine complex at high and low phosphate concentrations were similar to the catalytic rate constants. Fluorescence changes of the enzyme during phosphorolysis suggested that ribose 1-phosphate dissociated from the enzyme ribose 1-phosphate-guanine complex rapidly and that guanine dissociated from the enzyme-guanine complex slowly. The association and dissociation rate constants for acyclovir diphosphate, a potent inhibitor of the enzyme (Tuttle, J. V., and Krenitsky, T. A. (1984) J. Biol. Chem. 259, 4065-4069), were also dependent on phosphate concentration. The effects of phosphate are discussed in terms of a dual functional binding site for phosphate.[1]

References

 
WikiGenes - Universities