The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole.

While membrane transporters mediating ammonium uptake across the plasma membrane have been well described at the molecular level, little is known about compartmentation and cellular export of ammonium. (The term ammonium is used to denote both NH3 and NH4+ and chemical symbols are used when specificity is required.) We therefore developed a yeast (Saccharomyces cerevisiae) complementation approach and isolated two Arabidopsis (Arabidopsis thaliana) genes that conferred tolerance to the toxic ammonium analog methylammonium in yeast. Both genes, AtTIP2;1 and AtTIP2;3, encode aquaporins of the tonoplast intrinsic protein subfamily and transported methylammonium or ammonium in yeast preferentially at high medium pH. AtTIP2;1 expression in Xenopus oocytes increased 14C-methylammonium accumulation with increasing pH. AtTIP2;1- and AtTIP2;3-mediated methylammonium detoxification in yeast depended on a functional vacuole, which was in agreement with the subcellular localization of green fluorescent protein-fusion proteins on the tonoplast in planta. Transcript levels of both AtTIPs were influenced by nitrogen supply but did not follow those of the nitrogen-derepressed ammonium transporter gene AtAMT1;1. Transgenic Arabidopsis plants overexpressing AtTIP2;1 did not show altered ammonium accumulation in roots after ammonium supply, although AtTIP2;1 mRNA levels in wild-type plants were up-regulated under these conditions. This study shows that AtTIP2;1 and AtTIP2;3 can mediate the extracytosolic transport of methyl-NH2 and NH3 across the tonoplast membrane and may thus participate in vacuolar ammonium compartmentation.[1]


  1. Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole. Loqué, D., Ludewig, U., Yuan, L., von Wirén, N. Plant Physiol. (2005) [Pubmed]
WikiGenes - Universities