Loss of the AP-2alpha transcription factor is associated with the grade of human gliomas.
PURPOSE: The activator protein (AP)-2alpha transcription factor plays a crucial role in the progression of several human tumors, including malignant melanoma, prostate, and breast cancer. Loss of AP-2alpha results in deregulation of several genes with AP-2alpha binding motifs such as E-cadherin, p21WAF1, MMP-2, MCAM/MUC18, VEGF, and c-KIT. The purpose of our study was to determine AP-2alpha expression distribution among grades of gliomas and any possible effect on prognosis. EXPERIMENTAL DESIGN: A tissue microarray was assembled from all surgical glioma cases with available tissue samples at M.D. Anderson Cancer Center since 1986 to include 72 glioblastomas, 49 anaplastic astrocytomas, 9 low-grade astrocytoma, 37 oligodendrogliomas, 37 anaplastic oligodendrogliomas, 15 mixed oligoastrocytomas, 20 anaplastic mixed oligoastrocytomas, and 7 gliosarcomas. The microarray included normal brain tissue, and AP-2alpha expression was determined by immunohistochemistry. RESULTS: AP-2alpha expression was lost on 99% (P < 0.001) and 98% (P < 0.001) of glioblastomas and anaplastic astrocytomas, respectively, compared with grade 2 astrocytomas and normal brain, all of which (100%) maintained expression of AP-2alpha. The loss of AP-2alpha was a negative prognostic indicator within the overall category of gliomas by univariate analysis (rate ratio, 4.30; 95% confidence interval, 2.60-7.10; P < 0.001). However, there was no significant effect of loss of AP-2alpha expression on survival observed after adjustment for patient age, Karnofsky Performance Scale score, tumor grade, and extent of resection (rate ratio, 1.2; 95% confidence interval, 0.6-2.2; P = 0.6). CONCLUSIONS: AP-2alpha expression correlates inversely with glioma grade, suggesting a direct role in glioma tumorigenicity, possibly through subsequent deregulation of target genes. Of all the previously characterized markers of progression, the loss of AP-2alpha would be the most common (96.2%) molecular marker as an astrocytic tumor evolves from grade 2 to 3.[1]References
- Loss of the AP-2alpha transcription factor is associated with the grade of human gliomas. Heimberger, A.B., McGary, E.C., Suki, D., Ruiz, M., Wang, H., Fuller, G.N., Bar-Eli, M. Clin. Cancer Res. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg