The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Gliosarcoma

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Gliosarcoma

 

High impact information on Gliosarcoma

  • METHODS: 9L rat gliosarcoma cells were stably transfected with a human FPGS complementary DNA (cDNA), producing 9L/FPGS cells [6].
  • Analysis of interleukin 2 and various effector cell populations in adoptive immunotherapy of 9L rat gliosarcoma: allogeneic cytotoxic T lymphocytes prevent tumor take [7].
  • Amplification and overexpression of AKT1 was detected in a single case of gliosarcoma [8].
  • Importantly, ectopic expression of DcR3 resulted in substantial differences in immune cell infiltration in the 9L rat gliosarcoma model [9].
  • One hour after a 2-h i.v. infusion of BPA in rats with the 9L gliosarcoma, tumor boron-10 concentrations were 2.7 times higher than that of infiltrating tumor cells [83 +/- 23 microg/g tissue versus 31 +/- 12 microg/g tissue (mean +/- SD)] [1].
 

Chemical compound and disease context of Gliosarcoma

  • In this study, the effect of the interstitial, localized delivery of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) incorporated into controlled release polymers implanted adjacent to the 9L gliosarcoma was assessed in s.c. and intracranial (i.c.) models [10].
  • The combination of hrR3 plus ganciclovir led to the long-term survival of 48% of rats harboring intracerebral 9L gliosarcomas compared to 20% survival in the hrR3 group (P < 0.05) [11].
  • The thymidine analogue 5-iodo-2'-deoxyuridine (IdUrd) radiolabeled with 123I and 125I was injected directly into an intracerebral rat 9L gliosarcoma and found to be a sensitive and specific agent for the detection of this neoplasm in rats [12].
  • Analysis of rat cerebral 9L gliosarcoma infused with tritium-labeled CPEC demonstrated intratumoral accumulation of the active metabolite CPEC-triphosphate and concomitant depletion of CTP to a much greater extent in tumor tissue than in the adjacent brain [13].
  • Distribution of misonidazole adducts in 9L gliosarcoma tumors and spheroids: implications for oxygen distribution [14].
 

Biological context of Gliosarcoma

 

Anatomical context of Gliosarcoma

 

Gene context of Gliosarcoma

 

Analytical, diagnostic and therapeutic context of Gliosarcoma

References

  1. Quantitative imaging and microlocalization of boron-10 in brain tumors and infiltrating tumor cells by SIMS ion microscopy: relevance to neutron capture therapy. Smith, D.R., Chandra, S., Barth, R.F., Yang, W., Joel, D.D., Coderre, J.A. Cancer Res. (2001) [Pubmed]
  2. Use of replication-conditional adenovirus as a helper system to enhance delivery of P450 prodrug-activation genes for cancer therapy. Jounaidi, Y., Waxman, D.J. Cancer Res. (2004) [Pubmed]
  3. Therapeutic efficiency and safety of a second-generation replication-conditional HSV1 vector for brain tumor gene therapy. Kramm, C.M., Chase, M., Herrlinger, U., Jacobs, A., Pechan, P.A., Rainov, N.G., Sena-Esteves, M., Aghi, M., Barnett, F.H., Chiocca, E.A., Breakefield, X.O. Hum. Gene Ther. (1997) [Pubmed]
  4. Curative potential of herpes simplex virus thymidine kinase gene transfer in rats with 9L gliosarcoma. Cool, V., Pirotte, B., Gérard, C., Dargent, J.L., Baudson, N., Levivier, M., Goldman, S., Hildebrand, J., Brotchi, J., Velu, T. Hum. Gene Ther. (1996) [Pubmed]
  5. Characterisation of molecular alterations in microdissected archival gliomas. Walker, C., Joyce, K.A., Thompson-Hehir, J., Davies, M.P., Gibbs, F.E., Halliwell, N., Lloyd, B.H., Machell, Y., Roebuck, M.M., Salisbury, J., Sibson, D.R., Du Plessis, D., Broome, J., Rossi, M.L. Acta Neuropathol. (2001) [Pubmed]
  6. Folylpolyglutamyl synthetase gene transfer and glioma antifolate sensitivity in culture and in vivo. Aghi, M., Kramm, C.M., Breakefield, X.O. J. Natl. Cancer Inst. (1999) [Pubmed]
  7. Analysis of interleukin 2 and various effector cell populations in adoptive immunotherapy of 9L rat gliosarcoma: allogeneic cytotoxic T lymphocytes prevent tumor take. Kruse, C.A., Lillehei, K.O., Mitchell, D.H., Kleinschmidt-DeMasters, B., Bellgrau, D. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  8. Genetic alterations and aberrant expression of genes related to the phosphatidyl-inositol-3'-kinase/protein kinase B (Akt) signal transduction pathway in glioblastomas. Knobbe, C.B., Reifenberger, G. Brain Pathol. (2003) [Pubmed]
  9. Soluble decoy receptor 3 is expressed by malignant gliomas and suppresses CD95 ligand-induced apoptosis and chemotaxis. Roth, W., Isenmann, S., Nakamura, M., Platten, M., Wick, W., Kleihues, P., Bähr, M., Ohgaki, H., Ashkenazi, A., Weller, M. Cancer Res. (2001) [Pubmed]
  10. Interstitial chemotherapy of the 9L gliosarcoma: controlled release polymers for drug delivery in the brain. Tamargo, R.J., Myseros, J.S., Epstein, J.I., Yang, M.B., Chasin, M., Brem, H. Cancer Res. (1993) [Pubmed]
  11. Long-term survival of rats harboring brain neoplasms treated with ganciclovir and a herpes simplex virus vector that retains an intact thymidine kinase gene. Boviatsis, E.J., Park, J.S., Sena-Esteves, M., Kramm, C.M., Chase, M., Efird, J.T., Wei, M.X., Breakefield, X.O., Chiocca, E.A. Cancer Res. (1994) [Pubmed]
  12. Specific uptake of the auger electron-emitting thymidine analogue 5-[123I/125I]iodo-2'-deoxyuridine in rat brain tumors: diagnostic and therapeutic implications in humans. Kassis, A.I., Van den Abbeele, A.D., Wen, P.Y., Baranowska-Kortylewicz, J., Aaronson, R.A., DeSisto, W.C., Lampson, L.A., Black, P.M., Adelstein, S.J. Cancer Res. (1990) [Pubmed]
  13. In situ cyclopentenyl cytosine infusion for the treatment of experimental brain tumors. Viola, J.J., Agbaria, R., Walbridge, S., Oshiro, E.M., Johns, D.G., Kelley, J.A., Oldfield, E.H., Ram, Z. Cancer Res. (1995) [Pubmed]
  14. Distribution of misonidazole adducts in 9L gliosarcoma tumors and spheroids: implications for oxygen distribution. Franko, A.J., Koch, C.J., Boisvert, D.P. Cancer Res. (1992) [Pubmed]
  15. DNA damage in the intracerebral rat gliosarcoma 9L treated with 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea. Gutin, P.H., Hilton, J., Fein, V.J., Allan, A.E., Rottman, A., Walker, M.D. Cancer Res. (1977) [Pubmed]
  16. In vivo 31P nuclear magnetic resonance spectroscopy of subcutaneous 9L gliosarcoma: effects of tumor growth and treatment with 1,3-bis(2-chloroethyl)-1-nitrosourea on tumor bioenergetics and histology. Steen, R.G., Tamargo, R.J., McGovern, K.A., Rajan, S.S., Brem, H., Wehrle, J.P., Glickson, J.D. Cancer Res. (1988) [Pubmed]
  17. Identical mutations of the p53 tumor suppressor gene in the gliomatous and the sarcomatous components of gliosarcomas suggest a common origin from glial cells. Biernat, W., Aguzzi, A., Sure, U., Grant, J.W., Kleihues, P., Hegi, M.E. J. Neuropathol. Exp. Neurol. (1995) [Pubmed]
  18. Growth and migration markers of rat C6 glioma cells identified by serial analysis of gene expression. Gunnersen, J.M., Spirkoska, V., Smith, P.E., Danks, R.A., Tan, S.S. Glia (2000) [Pubmed]
  19. Effects of IFN-gamma and interleukin-1beta on major histocompatibility complex antigen and intercellular adhesion molecule-1 expression by 9L gliosarcoma: relevance to its cytolysis by alloreactive cytotoxic T lymphocytes. Schiltz, P.M., Gomez, G.G., Read, S.B., Kulprathipanja, N.V., Kruse, C.A. J. Interferon Cytokine Res. (2002) [Pubmed]
  20. Cellular regulation of poly(ADP) ribosylation of proteins. I. Comparison of hepatocytes, cultured cells and liver nuclei and the influence of varying concentrations of NAD. Kirsten, E., Jackowski, G., McLick, J., Hakam, A., Decker, K., Kun, E. Exp. Cell Res. (1985) [Pubmed]
  21. Intracellular distribution of various boron compounds for use in boron neutron capture therapy. Nguyen, T., Brownell, G.L., Holden, S.A., Teicher, B.A. Biochem. Pharmacol. (1993) [Pubmed]
  22. Gastrin significantly modifies the migratory abilities of experimental glioma cells. Lefranc, F., Camby, I., Belot, N., Bruyneel, E., Chaboteaux, C., Brotchi, J., Mareel, M., Salmon, I., Kiss, R. Lab. Invest. (2002) [Pubmed]
  23. The effect of interleukin-2 on the blood-brain barrier in the 9L gliosarcoma rat model. Alexander, J.T., Saris, S.C., Oldfield, E.H. J. Neurosurg. (1989) [Pubmed]
  24. Thorotrast-associated gliosarcoma. Including comments on thorotrast use and review of sequelae with particular reference to lesions of the central nervous system. Wargotz, E.S., Sidawy, M.K., Jannotta, F.S. Cancer (1988) [Pubmed]
  25. Genetic profile of gliosarcomas. Reis, R.M., Könü-Lebleblicioglu, D., Lopes, J.M., Kleihues, P., Ohgaki, H. Am. J. Pathol. (2000) [Pubmed]
  26. Connexins are expressed in primary brain tumors and enhance the bystander effect in gene therapy. Estin, D., Li, M., Spray, D., Wu, J.K. Neurosurgery (1999) [Pubmed]
  27. Anaplastic human gliomas grown in athymic mice. Morphology and glial fibrillary acidic protein expression. Jones, T.R., Bigner, S.H., Schold, S.C., Eng, L.F., Bigner, D.D. Am. J. Pathol. (1981) [Pubmed]
  28. Photodynamic therapy of 9L gliosarcoma with liposome-delivered photofrin. Jiang, F., Lilge, L., Logie, B., Li, Y., Chopp, M. Photochem. Photobiol. (1997) [Pubmed]
  29. Allograft inflammatory factor-1 defines a distinct subset of infiltrating macrophages/microglial cells in rat and human gliomas. Deininger, M.H., Seid, K., Engel, S., Meyermann, R., Schluesener, H.J. Acta Neuropathol. (2000) [Pubmed]
  30. Boronated dipeptide borotrimethylglycylphenylalanine as a potential boron carrier in boron neutron capture therapy for malignant brain tumors. Takagaki, M., Powell, W., Sood, A., Spielvogel, B.F., Hosmane, N.S., Kirihata, M., Ono, K., Masunaga, S.I., Kinashi, Y., Miyatake, S.I., Hashimoto, N. Radiat. Res. (2001) [Pubmed]
  31. Purified herpes simplex thymidine kinase Retrovector particles. I. In vitro characterization, in situ transduction efficiency, and histopathological analyses of gene therapy-treated brain tumors. Kruse, C.A., Roper, M.D., Kleinschmidt-DeMasters, B.K., Banuelos, S.J., Smiley, W.R., Robbins, J.M., Burrows, F.J. Cancer Gene Ther. (1997) [Pubmed]
 
WikiGenes - Universities