The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Calpain mediates excitotoxic DNA fragmentation via mitochondrial pathways in adult brains: evidence from calpastatin mutant mice.

Calpain has been implicated in excitotoxic neurode-generation, but its mechanism of action particularly in adult brains remains unclear. We generated mutant mice lacking or overexpressing calpastatin, the only solely calpain-specific inhibitor ever identified or synthesized. Modulation of calpastatin expression caused no defect in the mice under normal conditions, indicating that calpastatin functions as a negative regulator of calpain only under pathological conditions. Kainate-evoked excitotoxicity in hippocampus resulted in proteolytic activation of a proapoptotic Bcl-2 subfamily member (Bid), nuclear translocation of mitochondria-derived DNA fragmentation factors (apoptosis-inducing factor and endonuclease G), DNA fragmentation, and nuclear condensation in pyramidal neurons. These apoptotic responses were significantly augmented by calpastatin deficiency. Consistently calpastatin overexpression suppressed them. No evidence of caspase-3 activation was detected. Our results demonstrated that calpain mediates excitotoxic signals through mobilization of proapoptotic factors in a caspase-independent manner. These mutant mice will serve as useful tools for investigating calpain involvement in various diseases.[1]

References

  1. Calpain mediates excitotoxic DNA fragmentation via mitochondrial pathways in adult brains: evidence from calpastatin mutant mice. Takano, J., Tomioka, M., Tsubuki, S., Higuchi, M., Iwata, N., Itohara, S., Maki, M., Saido, T.C. J. Biol. Chem. (2005) [Pubmed]
 
WikiGenes - Universities