The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Constitutively activated FGFR3 mutants signal through PLCgamma-dependent and -independent pathways for hematopoietic transformation.

Ectopic expression of fibroblast growth factor receptor 3 ( FGFR3) associated with t(4;14) has been implicated in the pathogenesis of human multiple myeloma. Some t(4;14) patients have activating mutations of FGFR3, of which a minority are K650E (thanatophoric dysplasia type II [TDII]). To investigate the role of autophosphorylated tyrosine residues in FGFR3 signal transduction and transformation, we characterized a series of FGFR3 TDII mutants with single or multiple Y-->F substitutions. Phenylalanine substitution of Y760, essential for phospholipase Cgamma (PLCgamma) binding and activation, significantly attenuated FGFR3 TDII- mediated PLCgamma activation, as well as transformation in Ba/F3 cells and a murine bone marrow transplant leukemia model. In contrast, single substitution of Y577, Y724, or Y770 had minimal to moderate effects on TDII-dependent transformation. Substitution of all 4 non-activation loop tyrosine residues significantly attenuated, but did not abolish, TDII transforming activity. Similar observations were obtained in the context of a constitutively activated fusion TEL- FGFR3 associated with t(4;12)(p16;p13) peripheral T-cell lymphomas. Moreover, 2 independent EmuSR- FGFR3 TDII transgenic mouse lines developed a pro-B-cell lymphoma, and PLCgamma was highly activated in primary lymphoma cells as assessed by tyrosine phosphorylation. These data indicate that engagement of multiple signaling pathways, including PLCgamma-dependent and PLCgamma-independent pathways, is required for full hematopoietic transformation by constitutively activated FGFR3 mutants.[1]

References

  1. Constitutively activated FGFR3 mutants signal through PLCgamma-dependent and -independent pathways for hematopoietic transformation. Chen, J., Williams, I.R., Lee, B.H., Duclos, N., Huntly, B.J., Donoghue, D.J., Gilliland, D.G. Blood (2005) [Pubmed]
 
WikiGenes - Universities