Disruption of the mouse Large gene in the enr and myd mutants results in nerve, muscle, and neuromuscular junction defects.
The autosomal recessive neuromuscular disorder associated with the enervated (enr) mouse transgene insertion manifests impaired peripheral nerve regeneration due to defects in Schwann cells and resembles the myodystrophy (Large(myd)) phenotype. Here we show that the enr transgene has integrated into Chr 8 approximately 160 kb downstream from the 3' end of the Large gene disrupting its expression as confirmed by the lack of genetic complementation between Large(myd) and enr mice, the very low Large mRNA levels in enr tissues and hypoglycosylation of alpha-dystroglycan, a known substrate of LARGE. Mutant nerve conduction and grip strength were impaired whereas sodium channel clustering at the nodes of Ranvier was unaffected. Interestingly, the mutant neuromuscular junctions displayed abnormal acetylcholine receptor clustering with reduced immunostaining for beta-dystroglycan, laminin, agrin, MuSK, and to a lesser extent acetylcholinesterase and rapsyn. These data implicate LARGE in nerve, muscle, and neuromuscular junction function.[1]References
- Disruption of the mouse Large gene in the enr and myd mutants results in nerve, muscle, and neuromuscular junction defects. Levedakou, E.N., Chen, X.J., Soliven, B., Popko, B. Mol. Cell. Neurosci. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg