The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Ranvier's Nodes

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Ranvier's Nodes

 

High impact information on Ranvier's Nodes

  • We therefore now report a comparison of the effects of a vegetable toxin (oenanthotoxin or OETX) on both sodium current (INa) and intra-membrane charge movement (Q) in Ranvier nodes [4].
  • Asymmetrical currents and sodium currents in Ranvier nodes exposed to DDT [5].
  • We propose that gliomedin provides a glial cue for the formation of peripheral nodes of Ranvier [6].
  • Dystroglycan may be required for the normal maintenance of voltage-gated sodium channels at nodes of Ranvier, possibly by mediating trans interactions between Schwann cell microvilli and the nodal axolemma [7].
  • The contactin mutation does not affect sodium channel clustering at the nodes of Ranvier but alters the location of the Shaker-type Kv1.1 and Kv1.2 potassium channels [8].
 

Biological context of Ranvier's Nodes

 

Anatomical context of Ranvier's Nodes

 

Associations of Ranvier's Nodes with chemical compounds

 

Gene context of Ranvier's Nodes

 

Analytical, diagnostic and therapeutic context of Ranvier's Nodes

References

  1. The nodes of Ranvier in the nerves of mice with muscular dystrophy. Bradley, W.G., Jaros, E., Jenkison, M. J. Neuropathol. Exp. Neurol. (1977) [Pubmed]
  2. Peripheral nerve regeneration by transplantation of bone marrow stromal cell-derived Schwann cells in adult rats. Mimura, T., Dezawa, M., Kanno, H., Sawada, H., Yamamoto, I. J. Neurosurg. (2004) [Pubmed]
  3. Cytochemical evidence for redistribution of membrane pump calcium-ATPase and ecto-Ca-ATPase activity, and calcium influx in myelinated nerve fibres of the optic nerve after stretch injury. Maxwell, W.L., McCreath, B.J., Graham, D.I., Gennarelli, T.A. J. Neurocytol. (1995) [Pubmed]
  4. Block of Na current and intramembrane charge movment in myelinated nerve fibres poisoned with a vegetable toxin. Dubois, J.M., Schneider, M.F. Nature (1981) [Pubmed]
  5. Asymmetrical currents and sodium currents in Ranvier nodes exposed to DDT. Dubois, J.M., Bergman, C. Nature (1977) [Pubmed]
  6. Gliomedin mediates Schwann cell-axon interaction and the molecular assembly of the nodes of Ranvier. Eshed, Y., Feinberg, K., Poliak, S., Sabanay, H., Sarig-Nadir, O., Spiegel, I., Bermingham, J.R., Peles, E. Neuron (2005) [Pubmed]
  7. Unique role of dystroglycan in peripheral nerve myelination, nodal structure, and sodium channel stabilization. Saito, F., Moore, S.A., Barresi, R., Henry, M.D., Messing, A., Ross-Barta, S.E., Cohn, R.D., Williamson, R.A., Sluka, K.A., Sherman, D.L., Brophy, P.J., Schmelzer, J.D., Low, P.A., Wrabetz, L., Feltri, M.L., Campbell, K.P. Neuron (2003) [Pubmed]
  8. Contactin orchestrates assembly of the septate-like junctions at the paranode in myelinated peripheral nerve. Boyle, M.E., Berglund, E.O., Murai, K.K., Weber, L., Peles, E., Ranscht, B. Neuron (2001) [Pubmed]
  9. The effects of pyronin on sprouting and regeneration of mouse motor nerves. Keynes, R.J. Brain Res. (1982) [Pubmed]
  10. Lectin cytochemical evaluation of somatosensory neurons and their peripheral and central processes in rat and man. Nakagawa, F., Schulte, B.A., Spicer, S.S. Cell Tissue Res. (1986) [Pubmed]
  11. Mice lacking sodium channel beta1 subunits display defects in neuronal excitability, sodium channel expression, and nodal architecture. Chen, C., Westenbroek, R.E., Xu, X., Edwards, C.A., Sorenson, D.R., Chen, Y., McEwen, D.P., O'Malley, H.A., Bharucha, V., Meadows, L.S., Knudsen, G.A., Vilaythong, A., Noebels, J.L., Saunders, T.L., Scheuer, T., Shrager, P., Catterall, W.A., Isom, L.L. J. Neurosci. (2004) [Pubmed]
  12. Immunoelectron microscopic localization of neural cell adhesion molecules (L1, N-CAM, and MAG) and their shared carbohydrate epitope and myelin basic protein in developing sciatic nerve. Martini, R., Schachner, M. J. Cell Biol. (1986) [Pubmed]
  13. Amphiphysin II (SH3P9; BIN1), a member of the amphiphysin/Rvs family, is concentrated in the cortical cytomatrix of axon initial segments and nodes of ranvier in brain and around T tubules in skeletal muscle. Butler, M.H., David, C., Ochoa, G.C., Freyberg, Z., Daniell, L., Grabs, D., Cremona, O., De Camilli, P. J. Cell Biol. (1997) [Pubmed]
  14. Experimental paraprotein neuropathy, demyelination by passive transfer of human IgM anti-myelin-associated glycoprotein. Tatum, A.H. Ann. Neurol. (1993) [Pubmed]
  15. nsf is essential for organization of myelinated axons in zebrafish. Woods, I.G., Lyons, D.A., Voas, M.G., Pogoda, H.M., Talbot, W.S. Curr. Biol. (2006) [Pubmed]
  16. Cytotactin is involved in synaptogenesis during regeneration of the frog neuromuscular system. Mège, R.M., Nicolet, M., Pinçon-Raymond, M., Murawsky, M., Rieger, F. Dev. Biol. (1992) [Pubmed]
  17. Motor nerve terminal sprouting in formamide-treated inactive amphibian skeletal muscle. Wines, M.M., Letinsky, M.S. J. Neurosci. (1988) [Pubmed]
  18. Identification of O-linked N-acetylglucosamine modification of ankyrinG isoforms targeted to nodes of Ranvier. Zhang, X., Bennett, V. J. Biol. Chem. (1996) [Pubmed]
  19. The effects of a volatile anaesthetic on the excitability of human corticospinal axons. Burke, D., Bartley, K., Woodforth, I.J., Yakoubi, A., Stephen, J.P. Brain (2000) [Pubmed]
  20. AnkyrinG. A new ankyrin gene with neural-specific isoforms localized at the axonal initial segment and node of Ranvier. Kordeli, E., Lambert, S., Bennett, V. J. Biol. Chem. (1995) [Pubmed]
  21. Axonal dwindling in early experimental diabetes. II. A study of isolated nerve fibres. Jakobsen, J. Diabetologia (1976) [Pubmed]
  22. Early onset of degenerative changes at nodes of Ranvier in alpha-motor axons of Cntf null (-/-) mutant mice. Gatzinsky, K.P., Holtmann, B., Daraie, B., Berthold, C.H., Sendtner, M. Glia (2003) [Pubmed]
  23. KCNQ2 is a nodal K+ channel. Devaux, J.J., Kleopa, K.A., Cooper, E.C., Scherer, S.S. J. Neurosci. (2004) [Pubmed]
  24. Molecular composition of the node of Ranvier: identification of ankyrin-binding cell adhesion molecules neurofascin (mucin+/third FNIII domain-) and NrCAM at nodal axon segments. Davis, J.Q., Lambert, S., Bennett, V. J. Cell Biol. (1996) [Pubmed]
  25. Both laminin and Schwann cell dystroglycan are necessary for proper clustering of sodium channels at nodes of Ranvier. Occhi, S., Zambroni, D., Del Carro, U., Amadio, S., Sirkowski, E.E., Scherer, S.S., Campbell, K.P., Moore, S.A., Chen, Z.L., Strickland, S., Di Muzio, A., Uncini, A., Wrabetz, L., Feltri, M.L. J. Neurosci. (2005) [Pubmed]
  26. [Beta]IV-spectrin regulates sodium channel clustering through ankyrin-G at axon initial segments and nodes of Ranvier. Komada, M., Soriano, P. J. Cell Biol. (2002) [Pubmed]
  27. Characterization of a hyaluronic acid-binding protein from sheep brain comparison with human brain hyaluronectin. Delpech, B., Maingonnat, C., Delpech, A., Maes, P., Girard, N., Bertrand, P. Int. J. Biochem. (1991) [Pubmed]
  28. Distribution of sodium channels during nerve elongation in rat peripheral nerve. Ichimura, H., Shiga, T., Abe, I., Hara, Y., Terui, N., Tsujino, A., Ochiai, N. Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association. (2005) [Pubmed]
 
WikiGenes - Universities