The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

PWT-458, a novel pegylated-17-hydroxywortmannin, inhibits phosphatidylinositol 3-kinase signaling and suppresses growth of solid tumors.

Deregulated phosphatidylinositol 3-kinase (PI3K) signaling pathway is widely implicated in tumor growth and resistance to chemotherapy. While a strong rationale exists for pharmacological targeting of PI3K, only a few proof-of-principle in vivo efficacy studies are currently available. PWT-458, pegylated-17-hydroxywortmannin, is a novel and highly potent inhibitor of PI3K in animal models. Upon in vivo cleavage of its poly(ethyleneglycol) (PEG), PWT-458 releases its active moiety 17-hydroxywortmannin (17-HWT), the most potent inhibitor in its class. Here we show that a single intravenous injection of PWT-458 rapidly inhibited PI3K signaling, as measured by a complete loss of AKT (Ser-473) phosphorylation in xenograft tumors grown in nude mice. Following a daily X5 dosing regimen, PWT-458 demonstrated single-agent antitumor activity in nude mouse xenograft models of U87MG glioma, nonsmall cell lung cancer (NSCLC) A549, and renal cell carcinoma (RCC) A498. Efficacious doses ranged from 0.5 mg/kg to 10 mg/kg, achieving a superior therapeutic index over 17-HWT. PWT-458 augmented anticancer efficacy of a suboptimal dose of paclitaxel against A549 and U87MG tumors. Combination treatment of PWT-458 and an mTOR inhibitor, Pegylated-Rapamycin (Peg-Rapa), resulted in an enhanced antitumor efficacy in U87MG. Finally, PWT-458 in combination with interferon-alpha (Intron-A) caused a dramatic regression of RCC A498, which was not achieved by either agent alone. These studies identify PWT-458 as an effective anticancer agent and provide strong proof-of-principle for targeting the PI3K pathway as novel anticancer therapy.[1]


  1. PWT-458, a novel pegylated-17-hydroxywortmannin, inhibits phosphatidylinositol 3-kinase signaling and suppresses growth of solid tumors. Yu, K., Lucas, J., Zhu, T., Zask, A., Gaydos, C., Toral-Barza, L., Gu, J., Li, F., Chaudhary, I., Cai, P., Lotvin, J., Petersen, R., Ruppen, M., Fawzi, M., Ayral-Kaloustian, S., Skotnicki, J., Mansour, T., Frost, P., Gibbons, J. Cancer Biol. Ther. (2005) [Pubmed]
WikiGenes - Universities