The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Nuclear matrix proteins and hereditary diseases.

The review summarizes literature data on alterations of structure or expression of different nuclear matrix proteins in hereditary syndromes. From the point of view of involvement of nuclear matrix proteins in etiology and pathogenesis of the disease hereditary pathologies can be classified in pathologies with pathogenesis associated with defects of nuclear matrix proteins and pathologies associated to changes of the nuclear matrix protein spectrum. The first group includes laminopathies, hereditary diseases with abnormal nuclear-matrix associated proteins and triplet extension diseases associated with accumulation of abnormal proteins in the nuclear matrix. Laminopathies are hereditary diseases coupled to structural defects of the nuclear lamina. These diseases include Emery-Dreifuss muscular dystrophy, limb girdle muscular dystrophy, dilated cardiomyopathy (DCM) with conduction system disease, familial partial lipodystrophy (FPLD), autosomal recessive axonal neuropathy (Charcot-Marie-Tooth disorder type 2, CMT2), mandibuloacral dysplasia (MAD), Hutchison Gilford Progeria syndrome (HGS), Greenberg Skeletal Dysplasia, and Pelger-Huet anomaly (PHA). Most of them are due to mutations in the lamin A/C gene, one - to mutations in emerin gene, some are associated with mutations in Lamin B receptor gene. In Werner's, Bloom's, Cockayne's syndromes, Fanconi anemia, multiple carboxylase deficiency mutations in nuclear matrix protein or enzyme gene lead to deficient DNA repair, abnormal regulation of cell growth and differentiation or other specific metabolic functions. Proteins with a long polyglutamic tract synthesized in the cells of patients with dentato-rubral and pallido-luysian atrophy, myotonic dystrophy and Huntington disease interfere with transcription on the nuclear matrix. Down's syndrome is a representative of the group of diseases with altered nuclear matrix protein spectrum.[1]

References

  1. Nuclear matrix proteins and hereditary diseases. Sjakste, N., Sjakste, T. Genetika (2005) [Pubmed]
 
WikiGenes - Universities