The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Progeria

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Progeria

 

High impact information on Progeria

  • These studies suggest a new therapeutic strategy for treating progeria and other lamin A diseases [6].
  • Mice carrying a genetic defect in Ercc1 display symptoms suggestive of a progressive, segmental progeria, indicating that disruption of one or both of these DNA damage repair pathways accelerates aging [7].
  • At the mid-log stage, young cells contained more rhodamine initially and lost it more rapidly than old or progeria cells, in that order [8].
  • Mutations in lamins cause premature aging syndromes in humans, including the Hutchinson-Gilford Progeria Syndrome (HGPS) and Atypical Werner Syndrome [9].
  • Incomplete processing of mutant lamin A in Hutchinson-Gilford progeria leads to nuclear abnormalities, which are reversed by farnesyltransferase inhibition [10].
 

Chemical compound and disease context of Progeria

  • A ScaI RFLP at the E-selectin (SELE) locus in a progeria family [11].
  • We have observed elevated levels of hyaluronic acid (HA) excretion in progeria patients [12].
  • The spermidine content in quiescent progeria cells, however, was extremely low, less than half of that in quiescent IMR-90 cells [13].
  • Serum stimulation caused a marked increase in putrescine content in young cells but not in old cells or in progeria cells [13].
  • Progeria cells produced the most lactate but did not consume more glucose, while their basal and uncoupled O2 consumption was similar to that of young and old cells during both log and confluent states [14].
 

Biological context of Progeria

 

Anatomical context of Progeria

 

Gene context of Progeria

  • LMNA is mutated in Hutchinson-Gilford progeria (MIM 176670) but not in Wiedemann-Rautenstrauch progeroid syndrome (MIM 264090) [21].
  • PRELP, collagen, and a theory of Hutchinson-Gilford progeria [17].
  • We tested the efficacy of an FTI (ABT-100) in Zmpste24-deficient mice, a mouse model of progeria [22].
  • WRN was originally identified as a gene responsible for Werner syndrome (WS; "Progeria of Adults") [23].
  • RNAi of FACE1 protease results in growth inhibition of human cells expressing lamin A: implications for Hutchinson-Gilford progeria syndrome [24].

References

  1. Aging and nuclear organization: lamins and progeria. Mounkes, L.C., Stewart, C.L. Curr. Opin. Cell Biol. (2004) [Pubmed]
  2. Studies on age-related diseases in cultured skin fibroblasts. Goldstein, S. J. Invest. Dermatol. (1979) [Pubmed]
  3. Genetic alterations in accelerated ageing syndromes. Do they play a role in natural ageing? Puzianowska-Kuznicka, M., Kuznicki, J. Int. J. Biochem. Cell Biol. (2005) [Pubmed]
  4. Analysis of Werner's expression within the brain and primary neuronal culture. Gee, J., Ding, Q., Keller, J.N. Brain Res. (2002) [Pubmed]
  5. Progressive intracranial vascular disease with strokes and seizures in a boy with progeria. Rosman, N.P., Anselm, I., Bhadelia, R.A. J. Child Neurol. (2001) [Pubmed]
  6. Prelamin A and lamin A appear to be dispensable in the nuclear lamina. Fong, L.G., Ng, J.K., Lammerding, J., Vickers, T.A., Meta, M., Coté, N., Gavino, B., Qiao, X., Chang, S.Y., Young, S.R., Yang, S.H., Stewart, C.L., Lee, R.T., Bennett, C.F., Bergo, M.O., Young, S.G. J. Clin. Invest. (2006) [Pubmed]
  7. Reduced hematopoietic reserves in DNA interstrand crosslink repair-deficient Ercc1-/- mice. Prasher, J.M., Lalai, A.S., Heijmans-Antonissen, C., Ploemacher, R.E., Hoeijmakers, J.H., Touw, I.P., Niedernhofer, L.J. EMBO J. (2005) [Pubmed]
  8. Status of mitochondria in living human fibroblasts during growth and senescence in vitro: use of the laser dye rhodamine 123. Goldstein, S., Korczack, L.B. J. Cell Biol. (1981) [Pubmed]
  9. Age-related changes of nuclear architecture in Caenorhabditis elegans. Haithcock, E., Dayani, Y., Neufeld, E., Zahand, A.J., Feinstein, N., Mattout, A., Gruenbaum, Y., Liu, J. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  10. Incomplete processing of mutant lamin A in Hutchinson-Gilford progeria leads to nuclear abnormalities, which are reversed by farnesyltransferase inhibition. Glynn, M.W., Glover, T.W. Hum. Mol. Genet. (2005) [Pubmed]
  11. A ScaI RFLP at the E-selectin (SELE) locus in a progeria family. Warnecke, P., Weiss, A.S. Hum. Mol. Genet. (1993) [Pubmed]
  12. Progeria: a human-disease model of accelerated aging. Brown, W.T. Am. J. Clin. Nutr. (1992) [Pubmed]
  13. Changes of serum-induced ornithine decarboxylase activity and putrescine content during aging of IMR-90 human diploid fibroblasts. Chen, K.Y., Chang, Z.F., Liu, A.Y. J. Cell. Physiol. (1986) [Pubmed]
  14. Energy metabolism in cultured human fibroblasts during aging in vitro. Goldstein, S., Ballantyne, S.R., Robson, A.L., Moerman, E.J. J. Cell. Physiol. (1982) [Pubmed]
  15. Sister chromatid exchange frequencies in Progeria and Werner syndrome patients. Darlington, G.J., Dutkowski, R., Brown, W.T. Am. J. Hum. Genet. (1981) [Pubmed]
  16. Altered regulation of platelet-derived growth factor A-chain and c-fos gene expression in senescent progeria fibroblasts. Winkles, J.A., O'Connor, M.L., Friesel, R. J. Cell. Physiol. (1990) [Pubmed]
  17. PRELP, collagen, and a theory of Hutchinson-Gilford progeria. Lewis, M. Ageing Res. Rev. (2003) [Pubmed]
  18. A-type lamin-linked lipodystrophies. Vigouroux, C., Capeau, J. Novartis Found. Symp. (2005) [Pubmed]
  19. Altered response of progeria fibroblasts to epidermal growth factor. Colige, A., Nusgens, B., Lapiere, C.M. J. Cell. Sci. (1991) [Pubmed]
  20. Correction of cellular phenotypes of Hutchinson-Gilford Progeria cells by RNA interference. Huang, S., Chen, L., Libina, N., Janes, J., Martin, G.M., Campisi, J., Oshima, J. Hum. Genet. (2005) [Pubmed]
  21. LMNA is mutated in Hutchinson-Gilford progeria (MIM 176670) but not in Wiedemann-Rautenstrauch progeroid syndrome (MIM 264090). Cao, H., Hegele, R.A. J. Hum. Genet. (2003) [Pubmed]
  22. A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria. Fong, L.G., Frost, D., Meta, M., Qiao, X., Yang, S.H., Coffinier, C., Young, S.G. Science (2006) [Pubmed]
  23. The Werner syndrome protein: an update. Oshima, J. Bioessays (2000) [Pubmed]
  24. RNAi of FACE1 protease results in growth inhibition of human cells expressing lamin A: implications for Hutchinson-Gilford progeria syndrome. Gruber, J., Lampe, T., Osborn, M., Weber, K. J. Cell. Sci. (2005) [Pubmed]
 
WikiGenes - Universities