The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Sea bass (Dicentrarchus labrax) androgen receptor: cDNA cloning, tissue-specific expression, and mRNA levels during early development and sex differentiation.

Androgens play key roles in vertebrate sex differentiation, gonadal maturation and reproductive behaviour and their actions are generally mediated through specific nuclear receptors. The present study describes the isolation, sequencing and characterization of the cDNA encoding the androgen receptor ( AR) in the European sea bass. AR was cloned from a sea bass testis cDNA library and encoded a predicted protein of 767 residues, with a calculated molecular weight of 86.4 kDa and a theoretical pI of 6.34. Several domains present in all cloned ARs were identified. The domains corresponded to an amino-terminal hypervariable transcriptional activation domain (TAD), a central highly conserved DNA-binding domain (DBD), and a carboxy-terminal ligand-binding domain (LBD). Percentages of homology-similarity among these functional domains in teleost fish ranged between 9 and 75% for the TAD, 73 and 98% for the DBD, and 78 and 96% for the LBD when compared to those of the sea bass. Tissue-specific expression showed that AR was preferentially expressed in testis, ovaries, and brain. Some other tissues such as the head kidney, liver and spleen also showed AR expression although at very low levels. A semiquantitative PCR was developed to study the expression of AR mRNA during the period of development encompassed between 50 and 300 DPH in sea bass gonads. An experimental design, involving repeated size gradings, based on the fact that sea bass females are larger than males already at sex differentiation, was set to obtain a group consisting of the largest fish (female-dominant) and a group consisting of the smallest fish (male-dominant). The results showed very low mRNA expression levels of AR in the gonads during early development. Differences in AR expression between groups were first encountered at 150 DPH and became especially marked at 250 DPH with much higher levels in the male-dominant group. These sex-related differences in expression profiles between males and females by the time of sex differentiation, suggest an important role for AR controlling this process in the sea bass.[1]


WikiGenes - Universities