The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Assessment of penetrance and expressivity of RNAi-mediated silencing of the Arabidopsis phytoene desaturase gene.

RNA interference (RNAi) is of great value in plant functional genomics. However, the absence of RNAi phenotypes and the lack of uniform level of RNAi silencing has complicated gene identification. Here, the penetrance and expressivity of RNAi-mediated silencing of the phytoene desaturase (PDS) gene in Arabidopsis thaliana were examined quantitatively to provide a reference for the likely severity and distribution of silencing effects. Arabidopsis plants were transformed with an RNAi construct targeting PDS. Transgenic plants were examined for frequency of RNAi-mediated silencing and various silencing phenotypes. mRNA depletion level and RNAi expressivity were assayed by relative reverse transcription polymerase chain reaction (RT-PCR). High penetrance and variable expressivity of RNAi were demonstrated. An inverse correlation between PDS mRNA level and RNAi phenotype was seen. No direct relationship between copy number for the RNAi-generating transgene and phenotype was evident. Decreased RNAi penetrance in T2 plants was observed. It is suggested that variability in RNAi expressivity and postmeiotic decrease in RNAi penetrance constitute barriers for high throughput plant gene characterization.[1]

References

  1. Assessment of penetrance and expressivity of RNAi-mediated silencing of the Arabidopsis phytoene desaturase gene. Wang, T., Iyer, L.M., Pancholy, R., Shi, X., Hall, T.C. New Phytol. (2005) [Pubmed]
 
WikiGenes - Universities