The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Minireview: aquaporin 2 trafficking.

In the kidney aquaporin-2 (AQP2) provides a target for hormonal regulation of water transport by vasopressin. Short-term control of water permeability occurs via vesicular trafficking of AQP2 and long-term control through changes in the abundance of AQP2 and AQP3 water channels. Defective AQP2 trafficking causes nephrogenic diabetes insipidus, a condition characterized by the kidney inability to produce concentrated urine because of the insensitivity of the distal nephron to vasopressin. AQP2 is redistributed to the apical membrane of collecting duct cells through activation of a cAMP signaling cascade initiated by the binding of vasopressin to its V2-receptor. Protein kinase A-mediated phosphorylation of AQP2 has been proposed to be essential in regulating AQP2-containing vesicle exocytosis. Cessation of the stimulus is followed by endocytosis of the AQP2 proteins exposed on the plasma membrane and their recycling to the original stores, in which they are retained. Soluble N-ethylmaleimide sensitive fusion factor attachment protein receptors (SNARE) and actin cytoskeleton organization regulated by small GTPase of the Rho family were also proved to be essential for AQP2 trafficking. Data for functional involvement of the SNARE vesicle-associated membrane protein 2 in AQP2 targeting has recently been provided. Changes in AQP2 expression/trafficking are of particular importance in pathological conditions characterized by both dilutional and concentrating defects. One of these conditions, hypercalciuria, has shown to be associated with alteration of AQP2 urinary excretion. More precisely, recent data support the hypothesis that, in vivo external calcium, through activation of calcium-sensing receptors, modulates the expression/trafficking of AQP2. Together these findings underscore the importance of AQP2 in kidney pathophysiology.[1]


  1. Minireview: aquaporin 2 trafficking. Valenti, G., Procino, G., Tamma, G., Carmosino, M., Svelto, M. Endocrinology (2005) [Pubmed]
WikiGenes - Universities