The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

VAMP2  -  vesicle-associated membrane protein 2...

Homo sapiens

Synonyms: SYB2, Synaptobrevin-2, VAMP-2, Vesicle-associated membrane protein 2
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of VAMP2


High impact information on VAMP2


Biological context of VAMP2


Anatomical context of VAMP2


Associations of VAMP2 with chemical compounds

  • In contrast, addition of PIP2 to Stx4/SNAP23 vesicles inhibited the fusion reaction, and its addition to VAMP2 vesicles was stimulatory [12].
  • Addition of PA to Stx4/SNAP23 vesicles markedly enhanced the fusion rate, whereas its addition to VAMP2 vesicles was inhibitory [12].
  • Furthermore, we show that the COOH of nephrin interacts with the vesicular SNARE protein VAMP2 in vitro and ex vivo (using yeast-2 hybrid and coimmunoprecipitation studies) [13].
  • Accordingly, ionomycin induced translocation of VAMP-2 toward the plasma membrane [14].
  • Moreover, within these fractions Cdc42 and VAMP2 were found to co-immunoprecipitate under basal and glucose-stimulated conditions, suggesting that they moved as a complex [15].
  • Alanine-scanning mutagenesis and kinetic analysis identified three regions within VAMP-2 that were recognized by BoNT/B and TeNT: residues adjacent to the site of scissile bond cleavage (cleavage region) and residues located within N-terminal and C-terminal regions relative to the cleavage region [16].

Physical interactions of VAMP2

  • OBJECTIVE: We sought to determine whether eosinophils express the t-SNARE isoforms SNAP-23 and syntaxin-4 as potential binding targets for VAMP-2 during exocytosis [11].
  • It has been shown that PRA1 interacts with Rab proteins and with VAMP2 [17].
  • Whereas Ca(2+) dissociates the Hrs-containing complex but not the VAMP-2-containing SNARE complex [18].
  • Using atomic force microscopy we show that the SNARE-like domain of tomosyn-1 can form a complex with syntaxin-1 and SNAP25 but displays binding forces that are weaker than those observed for VAMP2 (237+/-13 versus 279+/-3 pN) [19].
  • In addition, Munc18c binds to the syntaxin4/SNAP23/VAMP2 SNARE complex [20].

Regulatory relationships of VAMP2

  • Subcellular fractionation analyses revealed a parallel redistribution of Cdc42 and VAMP2 from the granule fraction to the plasma membrane in response to glucose that temporally corresponded with the glucose-induced activation of Cdc42 [15].
  • We propose that hyperosmolarity increases surface GLUT4myc by preventing GLUT4 endocytosis and stimulating its exocytosis via a pathway independent of phosphatidylinositol 3-kinase activity and of VAMP2 or VAMP3 [21].

Other interactions of VAMP2


Analytical, diagnostic and therapeutic context of VAMP2


  1. VAMP2-dependent exocytosis regulates plasma membrane insertion of TRPC3 channels and contributes to agonist-stimulated Ca2+ influx. Singh, B.B., Lockwich, T.P., Bandyopadhyay, B.C., Liu, X., Bollimuntha, S., Brazer, S.C., Combs, C., Das, S., Leenders, A.G., Sheng, Z.H., Knepper, M.A., Ambudkar, S.V., Ambudkar, I.S. Mol. Cell (2004) [Pubmed]
  2. Ca(2+) influx and cAMP elevation overcame botulinum toxin A but not tetanus toxin inhibition of insulin exocytosis. Huang, X., Kang, Y.H., Pasyk, E.A., Sheu, L., Wheeler, M.B., Trimble, W.S., Salapatek, A., Gaisano, H.Y. Am. J. Physiol., Cell Physiol. (2001) [Pubmed]
  3. Regulation of aquaporin-2 water channel trafficking by vasopressin. Knepper, M.A., Inoue, T. Curr. Opin. Cell Biol. (1997) [Pubmed]
  4. SNARE complexes prepare for membrane fusion. Sørensen, J.B. Trends Neurosci. (2005) [Pubmed]
  5. Attractive axon guidance involves asymmetric membrane transport and exocytosis in the growth cone. Tojima, T., Akiyama, H., Itofusa, R., Li, Y., Katayama, H., Miyawaki, A., Kamiguchi, H. Nat. Neurosci. (2007) [Pubmed]
  6. Mutational analysis of VAMP domains implicated in Ca2+-induced insulin exocytosis. Regazzi, R., Sadoul, K., Meda, P., Kelly, R.B., Halban, P.A., Wollheim, C.B. EMBO J. (1996) [Pubmed]
  7. Piccolo, a presynaptic zinc finger protein structurally related to bassoon. Fenster, S.D., Chung, W.J., Zhai, R., Cases-Langhoff, C., Voss, B., Garner, A.M., Kaempf, U., Kindler, S., Gundelfinger, E.D., Garner, C.C. Neuron (2000) [Pubmed]
  8. Genomic organization and assignment of VAMP2 to 17p12 by FISH. Zoraqi, G.K., Paradisi, S., Falbo, V., Taruscio, D. Cytogenet. Cell Genet. (2000) [Pubmed]
  9. Hrs regulates early endosome fusion by inhibiting formation of an endosomal SNARE complex. Sun, W., Yan, Q., Vida, T.A., Bean, A.J. J. Cell Biol. (2003) [Pubmed]
  10. Role of vesicle-associated membrane protein-2, through Q-soluble N-ethylmaleimide-sensitive factor attachment protein receptor/R-soluble N-ethylmaleimide-sensitive factor attachment protein receptor interaction, in the exocytosis of specific and tertiary granules of human neutrophils. Mollinedo, F., Martín-Martín, B., Calafat, J., Nabokina, S.M., Lazo, P.A. J. Immunol. (2003) [Pubmed]
  11. Expression of eosinophil target SNAREs as potential cognate receptors for vesicle-associated membrane protein-2 in exocytosis. Logan, M.R., Lacy, P., Bablitz, B., Moqbel, R. J. Allergy Clin. Immunol. (2002) [Pubmed]
  12. Asymmetric phospholipid distribution drives in vitro reconstituted SNARE-dependent membrane fusion. Vicogne, J., Vollenweider, D., Smith, J.R., Huang, P., Frohman, M.A., Pessin, J.E. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  13. Nephrin is critical for the action of insulin on human glomerular podocytes. Coward, R.J., Welsh, G.I., Koziell, A., Hussain, S., Lennon, R., Ni, L., Tavaré, J.M., Mathieson, P.W., Saleem, M.A. Diabetes (2007) [Pubmed]
  14. Subcellular distribution of docking/fusion proteins in neutrophils, secretory cells with multiple exocytic compartments. Brumell, J.H., Volchuk, A., Sengelov, H., Borregaard, N., Cieutat, A.M., Bainton, D.F., Grinstein, S., Klip, A. J. Immunol. (1995) [Pubmed]
  15. A direct interaction between Cdc42 and vesicle-associated membrane protein 2 regulates SNARE-dependent insulin exocytosis. Nevins, A.K., Thurmond, D.C. J. Biol. Chem. (2005) [Pubmed]
  16. Substrate recognition of VAMP-2 by botulinum neurotoxin B and tetanus neurotoxin. Chen, S., Hall, C., Barbieri, J.T. J. Biol. Chem. (2008) [Pubmed]
  17. Expression analysis and chromosomal assignment of PRA1 and RILP genes. Bucci, C., De Gregorio, L., Bruni, C.B. Biochem. Biophys. Res. Commun. (2001) [Pubmed]
  18. Ca2+ and N-ethylmaleimide-sensitive factor differentially regulate disassembly of SNARE complexes on early endosomes. Yan, Q., Sun, W., McNew, J.A., Vida, T.A., Bean, A.J. J. Biol. Chem. (2004) [Pubmed]
  19. Tomosyn-1 is involved in a post-docking event required for pancreatic beta-cell exocytosis. Cheviet, S., Bezzi, P., Ivarsson, R., Renström, E., Viertl, D., Kasas, S., Catsicas, S., Regazzi, R. J. Cell. Sci. (2006) [Pubmed]
  20. Molecular dissection of the munc18c/syntaxin4 interaction: implications for regulation of membrane trafficking. Latham, C.F., Lopez, J.A., Hu, S.H., Gee, C.L., Westbury, E., Blair, D.H., Armishaw, C.J., Alewood, P.F., Bryant, N.J., James, D.E., Martin, J.L. Traffic (2006) [Pubmed]
  21. Hyperosmolarity reduces GLUT4 endocytosis and increases its exocytosis from a VAMP2-independent pool in l6 muscle cells. Li, D., Randhawa, V.K., Patel, N., Hayashi, M., Klip, A. J. Biol. Chem. (2001) [Pubmed]
  22. Vesicle-associated membrane protein 3 (VAMP-3) and VAMP-8 are present in human platelets and are required for granule secretion. Polgár, J., Chung, S.H., Reed, G.L. Blood (2002) [Pubmed]
  23. Assembly of a ternary complex by the predicted minimal coiled-coil-forming domains of syntaxin, SNAP-25, and synaptobrevin. A circular dichroism study. Cánaves, J.M., Montal, M. J. Biol. Chem. (1998) [Pubmed]
  24. Fusion protein vesicle-associated membrane protein 2 is implicated in IFN-gamma-induced piecemeal degranulation in human eosinophils from atopic individuals. Lacy, P., Logan, M.R., Bablitz, B., Moqbel, R. J. Allergy Clin. Immunol. (2001) [Pubmed]
  25. SNARE proteins are critical for regulated exocytosis of ECP from human eosinophils. Hoffmann, H.J., Bjerke, T., Karawajczyk, M., Dahl, R., Knepper, M.A., Nielsen, S. Biochem. Biophys. Res. Commun. (2001) [Pubmed]
  26. SNARE proteins are critical for regulated exocytosis of ECP from human eosinophils. Hoffmann, H.J., Bjerke, T., Karawajczyk, M., Dahl, R., Knepper, M.A., Nielsen, S. Biochem. Biophys. Res. Commun. (2001) [Pubmed]
  27. Pancreatic Acinar Cells Express Vesicle-associated Membrane Protein 2- and 8-Specific Populations of Zymogen Granules with Distinct and Overlapping Roles in Secretion. Weng, N., Thomas, D.D., Groblewski, G.E. J. Biol. Chem. (2007) [Pubmed]
  28. Expression of SNARE proteins in enteroendocrine cell lines and functional role of tetanus toxin-sensitive proteins in cholecystokinin release. Némoz-Gaillard, E., Bosshard, A., Regazzi, R., Bernard, C., Cuber, J.C., Takahashi, M., Catsicas, S., Chayvialle, J.A., Abello, J. FEBS Lett. (1998) [Pubmed]
WikiGenes - Universities