The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Characterization of human cytochrome p450 enzymes involved in the metabolism of the piperidine-type phenothiazine neuroleptic thioridazine.

The aim of the present study was to identify human cytochrome P450 enzymes (P450s) involved in mono-2-, di-2-, and 5-sulfoxidation, and N-demethylation of the piperidine-type phenothiazine neuroleptic thioridazine in the human liver. The experiments were performed in vitro using cDNA-expressed human P450s (Supersomes 1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, and 3A4), liver microsomes from different donors, and P450-selective inhibitors. The results indicate that CYP1A2 and CYP3A4 are the main enzymes responsible for 5-sulfoxidation and N-demethylation (34-52%), whereas CYP2D6 is the basic enzyme that catalyzes mono-2- and di-2-sulfoxidation of thioridazine in human liver (49 and 64%, respectively). Besides CYP2D6, CYP3A4 contributes to a noticeable degree to thioridazine mono-2-sulfoxidation (22%). Therefore, the sulforidazine/mesoridazine ratio may be an additional and more specific marker than the mesoridazine/thioridazine ratio for assessing the activity of CYP2D6. In contrast to promazine and perazine, CYP2C19 insignificantly contributes to the N-demethylation of thioridazine. Considering serious side-effects of thioridazine and its 5-sulfoxide (cardiotoxicity), as well as strong dopaminergic D2 and noradrenergic alpha1 receptor-blocking properties of mono-2- and di-2-sulfoxides, the obtained results are of pharmacological and clinical importance, in particular, in a combined therapy. Knowledge of the catalysis of thioridazine metabolism helps to choose optimum conditions (a proper coadministered drug and dosage) to avoid undesirable drug interactions.[1]


WikiGenes - Universities