Intracellular mechanisms mediating tocotrienol-induced apoptosis in neoplastic mammary epithelial cells.
Tocotrienols and tocopherols represent the two subgroups that make up the vitamin E family of compounds. However, tocotrienols display significantly more potent apoptotic activity in neoplastic mammary epithelial cells than tocopherols. Studies were conducted to determine the intracellular mechanism(s) mediating tocotrienol-induced apoptosis in neoplastic +SA mouse mammary epithelial cells in vitro. An initial step in apoptosis is the activation of 'initiator' caspases (caspase-8 or -9) that subsequently activate 'effector' caspases (caspase-3, -6 and -7) and induce apoptosis. Treatment with cytotoxic doses of alpha-tocotrienol (20 microM) resulted in a time-dependent increase in caspase-8 and caspase-3 activity. Combined treatment with specific caspase-8 or caspase-3 inhibitors completely blocked alpha-tocotrienol- induced apoptosis and caspase-8 or caspase-3 activity, respectively. In contrast, alpha-tocotrienol treatment had no effect on caspase-9 activation, and combined treatment with a specific caspase-9 inhibitor did not block alpha-tocotrienol-induced apoptosis in (+)SA cells. Since caspase-8 activation is associated with the activation of death receptors, such as Fas, tumor necrosis factor (TNF), or TNF-related apoptosis-inducing ligand (TRAIL) receptors, studies were conducted to determine the exact death receptor(s) and ligand(s) involved in mediating tocotrienol-induced caspase-8 activation and apoptosis. Treatment with Fas-ligand (FasL), Fas-activating antibody, or TRAIL failed to induce cell death in (+)SA neoplastic mammary epithelial cells, suggesting that these cells are resistant to death receptor-induced apoptosis. Moreover, treatment with cytotoxic doses of alpha-tocotrienol did not alter the intracellular levels of Fas, FasL, or Fas-associated death domain (FADD) in these cells. Western blot analysis also showed that alpha-tocotrienol did not induce FasL or FADD translocation from the cytosolic to membrane fraction in these cells. Finally, treatment with Fas-blocking antibody did not reverse the tocotrienol-induced apoptosis in (+)SA cells. These data demonstrate that tocotrienol-induced caspase-8 activation and apoptosis is not mediated through death receptor activation in malignant (+)SA mammary epithelial cells. Resistance to death receptor-induced apoptosis has been shown to be associated with increased expression of apoptosis-inhibitory proteins, such as FLICE-inhibitory protein (FLIP), and enhanced signalling of the phosphatidylinositol 3-kinase (PI3K)/PI3K-dependent kinase (PDK)/Akt mitogenic pathway. Additional studies showed that treatment with cytotoxic doses of alpha-tocotrienol decreased total, membrane, and cytosolic levels of FLIP, and reduced phosphorylated PDK-1 (active) and phosphorylated-Akt (active) levels in these cells. In summary, these findings demonstrate that tocotrienol-induced caspase-8 activation and apoptosis in malignant (+)SA mammary epithelial cells is not mediated through the activation of death receptors, but appears to result from the suppression of the PI3K/PDK/Akt mitogenic signalling pathway, and subsequent reduction in intracellular FLIP expression.[1]References
- Intracellular mechanisms mediating tocotrienol-induced apoptosis in neoplastic mammary epithelial cells. Sylvester, P.W., Shah, S. Asia Pacific journal of clinical nutrition. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg