The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Embryonic stem cells form glandular structures and express surfactant protein C following culture with dissociated fetal respiratory tissue.

Mouse embryonic stem cells (MESCs) are pluripotent, theoretically immortal cells derived from the inner cell mass of developing blastocysts. The respiratory epithelium develops from the primitive foregut endoderm as a result of inductive morphogenetic interactions with the surrounding visceral mesoderm. After dissociation of the explanted fetal lung into single cells, these morphogenetic signaling pathways instruct reconstitution of the developing lung according to a process known as organotypic regeneration. Data presented here demonstrate that such fetal lung morphogenetic cues induce MESC derivatives to incorporate into the reforming pseudoglandular-like tubular ducts, display pan-keratin and surfactant protein C (Sftpc) immunoreactivity, and express Sftpc transcripts while displaying a normal diploid karyotype in coculture. The Sftpc inductive capacity of dissociated fetal lung tissue shows stage specificity with 24% of all MESC derivatives displaying Sftpc immunoreactivity after coculture with embryonic day 11.5 (E11.5) lung buds compared with 6% and 0.02% following coculture with E12.5 and E13.5 lung buds, respectively. MESC derivative Sftpc immunoreactivity follows a spatial and temporal specific maturation profile with an initially ubiquitous cellular Sftpc immunostaining pattern becoming apically polarized with time. Directing differentiation of MESCs into respiratory lineages has important implications for cell replacement therapeutics aimed at treating respiratory-specific diseases such as cystic fibrosis and idiopathic pulmonary fibrosis.[1]


WikiGenes - Universities