The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Contribution of aldose reductase to diabetic hyperproliferation of vascular smooth muscle cells.

The objective of this study was to determine whether the polyol pathway enzyme aldose reductase mediates diabetes abnormalities in vascular smooth muscle cell (SMC) growth. Aldose reductase inhibitors (tolrestat or sorbinil) or antisense aldose reductase mRNA prevented hyperproliferation of cultured rat aortic SMCs induced by high glucose. Cell cycle progression in the presence of high glucose was blocked by tolrestat, which induced a G0-G1 phase growth arrest. In situ, diabetes increased SMC growth and intimal hyperplasia in balloon-injured carotid arteries of streptozotocin-treated rats, when examined 7 or 14 days after injury. Treatment with tolrestat (15 mg x kg(-1) x day(-1)) diminished intimal hyperplasia and decreased SMC content of the lesion by 25%. Although tolrestat treatment increased immunoreactivity of the lesion with antibodies raised against protein adducts of the lipid peroxidation product 4-hydroxy trans-2-nonenal, no compensatory increase in lesion fibrosis was observed. Collectively, these results suggest that inhibition of aldose reductase prevents glucose-induced stimulation of SMC growth in culture and in situ. Even though inhibition of aldose reductase increases vascular oxidative stress, this approach may be useful in preventing abnormal SMC growth in vessels of diabetic patients.[1]


  1. Contribution of aldose reductase to diabetic hyperproliferation of vascular smooth muscle cells. Srivastava, S., Ramana, K.V., Tammali, R., Srivastava, S.K., Bhatnagar, A. Diabetes (2006) [Pubmed]
WikiGenes - Universities