The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Current strategies for modulating lymphangiogenesis signalling pathways in human disease.

The recent discovery that members of the vascular endothelial growth factor (VEGF) family of secreted glycoproteins can mediate lymphatic vessel growth (lymphangiogenesis) via cell surface receptor tyrosine kinases expressed on endothelial cells has opened the way for therapeutic intervention for pathologies involving dysregulated lymphatic vessel function. At least two members of this family, VEGF-C and VEGF-D, have been shown to induce lymphangiogenesis in vivo. Lymphatic vessels and their specific growth factors have been directly implicated in a number of significant human pathologies. In cancer, VEGF-C and VEGF-D appear to correlate with tumor metastasis and poor patient outcome in a range of prevalent human cancers. Experimental studies have demonstrated that expression of the lymphangiogenic growth factors in tumor models induces increased lymphangiogenesis and results in spread of tumor cells via the lymphatics. In contrast, conditions such as lymphedema, where lymphatic vessels fail to clear fluid from interstitial spaces, are opportunities for which the application of growth factors to generate new lymphatic vessels may be a viable therapeutic option. The list of molecules that control lymphangiogenesis is now expanding, allowing more opportunities for the development of drugs with which to manipulate the relevant signalling pathways. Modulating these pathways and other molecules with specificity to the lymphatic endothelium could offer alternative treatments for a number of important clinical conditions.[1]

References

  1. Current strategies for modulating lymphangiogenesis signalling pathways in human disease. Stacker, S.A., Hughes, R.A., Williams, R.A., Achen, M.G. Current medicinal chemistry. (2006) [Pubmed]
 
WikiGenes - Universities