The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Activity of a novel PDGF beta-receptor enhancer during the cell cycle and upon differentiation of neuroblastoma.

PDGF acts as an autocrine and paracrine factor in certain tumors through upregulation of the PDGF beta-receptor expression. In order to elucidate the control mechanism for the receptor expression, we have isolated an enhancer from two P1 clones that together contain a 102 kb NotI region covering the entire human PDGFRB gene. They were partially digested with TspI and cloned into the PDGFRB enhancer trap vector to make a library for identification of enhancers. The digested DNA containing enhancer was identified by expression of GFP when transfected in PDGF beta-receptor expressing cells. One of the enhancer clones was further examined by making several deletion mutants in a luciferase vector. This enhancer was most active in neuroblastoma cells, IMR32 and BE2, but less active in hemangioma and in smooth muscle cell lines. Chip assay revealed that SP1, AP2, and GATA2 bound the enhancer in BE2 cells. Their interaction occurred dependently of the cell cycle and synchronously with their binding to the promoter. Transfection of GATA2 alone or with Ets, which binds adjacent to GATA, resulted in differentiation of BE2 cells in parallel with increased PDGF beta-receptor expression. Furthermore, over-expression of the PDGF beta-receptor in BE2 cells induced neurite extension.[1]


  1. Activity of a novel PDGF beta-receptor enhancer during the cell cycle and upon differentiation of neuroblastoma. Kaneko, M., Yang, W., Matsumoto, Y., Watt, F., Funa, K. Exp. Cell Res. (2006) [Pubmed]
WikiGenes - Universities