The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Human ether-a-go-go-related (HERG) gene and ATP-sensitive potassium channels as targets for adverse drug effects.

Torsades de pointes (TdP) arrhythmia is a potentially fatal form of ventricular arrhythmia that occurs under conditions where cardiac repolarization is delayed (as indicated by prolonged QT intervals from electrocardiographic recordings). A likely mechanism for QT interval prolongation and TdP arrhythmias is blockade of the rapid component of the cardiac delayed rectifier K(+) current (I(Kr)), which is encoded by human ether-a-go-go-related gene (HERG). Over 100 non-cardiovascular drugs have the potential to induce QT interval prolongations in the electrocardiogram (ECG) or TdP arrhythmias. The binding site of most HERG channel blockers is located inside the central cavity of the channel. An evaluation of possible effects on HERG channels during the development of novel drugs is recommended by international guidelines. During cardiac ischaemia activation of ATP-sensitive K(+) (K(ATP)) channels contributes to action potential (AP) shortening which is either cardiotoxic by inducing re-entrant ventricular arrhythmias or cardioprotective by inducing energy-sparing effects or ischaemic preconditioning (IPC). K(ATP) channels are formed by an inward-rectifier K(+) channel (Kir6.0) and a sulfonylurea receptor (SUR) subunit: Kir6.2 and SUR2A in cardiac myocytes, Kir6.2 and SUR1 in pancreatic beta-cells. Sulfonylureas and glinides stimulate insulin secretion via blockade of the pancreatic beta-cell K(ATP) channel. Clinical studies about cardiotoxic effects of sulfonylureas are contradictory. Sulfonylureas and glinides differ in their selectivity for pancreatic over cardiovascular K(ATP) channels, being either selective (tolbutamide, glibenclamide) or non-selective (repaglinide). The possibility exists that non-selective K(ATP) channel inhibitors might have cardiovascular side effects. Blockers of the pore-forming Kir6.2 subunit are insulin secretagogues and might have cardioprotective or cardiotoxic effects during cardiac ischaemia.[1]


WikiGenes - Universities