The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

CHEMBL356866     2-ethoxy-4-[[3-methyl-1-[2- (1...

Synonyms: SureCN163867, AG-K-44011, ACMC-20aa1y, ACMC-20cfpd, Oprea1_101414, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Repaglinide

  • Repaglinide-induced factitious hypoglycemia [1].
  • OBJECTIVE: To compare the effect on glycemic control and weight gain of repaglinide versus metformin combined with bedtime NPH insulin in patients with type 2 diabetes [2].
  • CONCLUSIONS: A single dose of repaglinide (0.5-4.0 mg) before breakfast improves insulin secretion and reduces prandial hyperglycemia dose-dependently Administration of repaglinide had no effect on insulin secretion with the second meal, which was consumed 4 h after breakfast [3].
  • There was no significant body weight increase in the repaglinide group [4].
  • Although adjustment of starting doses of repaglinide is not necessary for renal impairment or renal failure, severe impairment may require more care when upward adjustments of dosage are made [5].

High impact information on Repaglinide

  • Nateglinide and repaglinide dose-dependently inhibited whole-cell Kir6.2/SUR1 currents with half-maximal inhibitory concentration (IC(50)) values of 800 and 21 nmol/l, respectively [6].
  • These observations suggest that the insulinotropic actions of repaglinide and glibenclamide in vitro and in vivo are secondary to their binding to the high-affinity repaglinide site and that the insulinotropic action of repaglinide involves both distinct and common cellular mechanisms [7].
  • Two binding sites were identified: a high-affinity repaglinide (KD = 3.6 nmol/l) site having lower affinity for glibenclamide (14.4 nmol/l) and one high-affinity glibenclamide (25 nmol/l) site having lower affinity for repaglinide (550 nmol/l) [7].
  • The insulinotrope repaglinide is successful in therapy, but has been reported to inhibit the recombinant K(ATP) channels of beta cells, cardiocytes and non-vascular smooth muscle cells with similar potencies, suggesting that the (patho-)physiological role of the cardiovascular K(ATP) channels may be overstated [8].
  • To this end new short-acting enhancers of insulin secretion such as repaglinide (benzoic acid derivative) and nateglinide (amino acid derivative) have been developed [9].

Chemical compound and disease context of Repaglinide


Biological context of Repaglinide


Anatomical context of Repaglinide


Associations of Repaglinide with other chemical compounds


Gene context of Repaglinide


Analytical, diagnostic and therapeutic context of Repaglinide


  1. Repaglinide-induced factitious hypoglycemia. Hirshberg, B., Skarulis, M.C., Pucino, F., Csako, G., Brennan, R., Gorden, P. J. Clin. Endocrinol. Metab. (2001) [Pubmed]
  2. Repaglinide versus metformin in combination with bedtime NPH insulin in patients with type 2 diabetes established on insulin/metformin combination therapy. Furlong, N.J., Hulme, S.A., O'Brien, S.V., Hardy, K.J. Diabetes Care (2002) [Pubmed]
  3. Increased prandial insulin secretion after administration of a single preprandial oral dose of repaglinide in patients with type 2 diabetes. Owens, D.R., Luzio, S.D., Ismail, I., Bayer, T. Diabetes Care (2000) [Pubmed]
  4. Flexible meal-related dosing with repaglinide facilitates glycemic control in therapy-naive type 2 diabetes. Moses, R.G., Gomis, R., Frandsen, K.B., Schlienger, J.L., Dedov, I. Diabetes Care (2001) [Pubmed]
  5. Pharmacokinetics of repaglinide in subjects with renal impairment. Marbury, T.C., Ruckle, J.L., Hatorp, V., Andersen, M.P., Nielsen, K.K., Huang, W.C., Strange, P. Clin. Pharmacol. Ther. (2000) [Pubmed]
  6. Differential interactions of nateglinide and repaglinide on the human beta-cell sulphonylurea receptor 1. Hansen, A.M., Christensen, I.T., Hansen, J.B., Carr, R.D., Ashcroft, F.M., Wahl, P. Diabetes (2002) [Pubmed]
  7. Stimulation of insulin release by repaglinide and glibenclamide involves both common and distinct processes. Fuhlendorff, J., Rorsman, P., Kofod, H., Brand, C.L., Rolin, B., MacKay, P., Shymko, R., Carr, R.D. Diabetes (1998) [Pubmed]
  8. Selectivity of repaglinide and glibenclamide for the pancreatic over the cardiovascular K(ATP) channels. Stephan, D., Winkler, M., Kühner, P., Russ, U., Quast, U. Diabetologia (2006) [Pubmed]
  9. Rationale and options for combination therapy in the treatment of Type 2 diabetes. Van Gaal, L.F., De Leeuw, I.H. Diabetologia (2003) [Pubmed]
  10. Cyclosporine markedly raises the plasma concentrations of repaglinide. Kajosaari, L.I., Niemi, M., Neuvonen, M., Laitila, J., Neuvonen, P.J., Backman, J.T. Clin. Pharmacol. Ther. (2005) [Pubmed]
  11. A 1-year multicenter randomized double-blind comparison of repaglinide and glyburide for the treatment of type 2 diabetes. Dutch and German Repaglinide Study Group. Wolffenbuttel, B.H., Landgraf, R. Diabetes Care (1999) [Pubmed]
  12. Beta-cell insulin secretory response to oral hypoglycemic agents is blunted in humans in vivo during moderate hypoglycemia. Aldhahi, W., Armstrong, J., Bouche, C., Carr, R.D., Moses, A., Goldfine, A.B. J. Clin. Endocrinol. Metab. (2004) [Pubmed]
  13. Telithromycin, but not montelukast, increases the plasma concentrations and effects of the cytochrome P450 3A4 and 2C8 substrate repaglinide. Kajosaari, L.I., Niemi, M., Backman, J.T., Neuvonen, P.J. Clin. Pharmacol. Ther. (2006) [Pubmed]
  14. Selectivity of prandial glucose regulators: nateglinide, but not repaglinide, accelerates exocytosis in rat pancreatic A-cells. Bokvist, K., Hoy, M., Buschard, K., Holst, J.J., Thomsen, M.K., Gromada, J. Eur. J. Pharmacol. (1999) [Pubmed]
  15. Insulin and glucose excursion following premeal insulin lispro or repaglinide in cystic fibrosis-related diabetes. Moran, A., Phillips, J., Milla, C. Diabetes Care (2001) [Pubmed]
  16. Repaglinide administration improves brachial reactivity in type 2 diabetic patients. Manzella, D., Grella, R., Abbatecola, A.M., Paolisso, G. Diabetes Care (2005) [Pubmed]
  17. Polymorphic organic anion transporting polypeptide 1B1 is a major determinant of repaglinide pharmacokinetics. Niemi, M., Backman, J.T., Kajosaari, L.I., Leathart, J.B., Neuvonen, M., Daly, A.K., Eichelbaum, M., Kivistö, K.T., Neuvonen, P.J. Clin. Pharmacol. Ther. (2005) [Pubmed]
  18. Effects of the hypoglycaemic drugs repaglinide and glibenclamide on ATP-sensitive potassium-channels and cytosolic calcium levels in beta TC3 cells and rat pancreatic beta cells. Gromada, J., Dissing, S., Kofod, H., Frøkjaer-Jensen, J. Diabetologia (1995) [Pubmed]
  19. Effect of repaglinide on cloned beta cell, cardiac and smooth muscle types of ATP-sensitive potassium channels. Dabrowski, M., Wahl, P., Holmes, W.E., Ashcroft, F.M. Diabetologia (2001) [Pubmed]
  20. Repaglinide/troglitazone combination therapy: improved glycemic control in type 2 diabetes. Raskin, P., Jovanovic, L., Berger, S., Schwartz, S., Woo, V., Ratner, R. Diabetes Care (2000) [Pubmed]
  21. The cytochrome P4503A4 inhibitor clarithromycin increases the plasma concentrations and effects of repaglinide. Niemi, M., Neuvonen, P.J., Kivistö, K.T. Clin. Pharmacol. Ther. (2001) [Pubmed]
  22. Towards selective Kir6.2/SUR1 potassium channel openers, medicinal chemistry and therapeutic perspectives. Hansen, J.B. Current medicinal chemistry. (2006) [Pubmed]
  23. Kir6.2-dependent high-affinity repaglinide binding to beta-cell K(ATP) channels. Hansen, A.M., Hansen, J.B., Carr, R.D., Ashcroft, F.M., Wahl, P. Br. J. Pharmacol. (2005) [Pubmed]
  24. Effect of repaglinide addition to metformin monotherapy on glycemic control in patients with type 2 diabetes. Moses, R., Slobodniuk, R., Boyages, S., Colagiuri, S., Kidson, W., Carter, J., Donnelly, T., Moffitt, P., Hopkins, H. Diabetes Care (1999) [Pubmed]
  25. Optimizing insulin secretagogue therapy in patients with type 2 diabetes: a randomized double-blind study with repaglinide. Schmitz, O., Lund, S., Andersen, P.H., Jønler, M., Pørksen, N. Diabetes Care (2002) [Pubmed]
  26. Repaglinide: a review of its therapeutic use in type 2 diabetes mellitus. Culy, C.R., Jarvis, B. Drugs (2001) [Pubmed]
  27. Rapid acting insulinotropic agents: restoration of early insulin secretion as a physiologic approach to improve glucose control. Pratley, R.E., Foley, J.E., Dunning, B.E. Curr. Pharm. Des. (2001) [Pubmed]
WikiGenes - Universities