The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Geldanamycin treatment reduces neovascularization in a mouse model of retinopathy of prematurity.

BACKGROUND: The benzoquinoid antibiotic 17-allylaminogeldanamycin (17-AAG) inhibits the Ras/Raf/MEK and PI3-Kinase signaling pathways and down-regulates vascular endothelial factor expression. Here we use a mouse model of oxygen-induced retinopathy to investigate the effect of 17-AAG on retinal neovascularization and vascular recovery. MATERIAL AND METHODS: C57BL/6 mice were exposed to 75% oxygen from postnatal day 7 (P7) to P12 and recovered in room air thereafter. Beginning with P12 mice were treated for 5 days by daily IP injection of 17-AAG (12.5 mg/kg body weight) micro dispersed in an emulsion of 4% Lipoid EPC, 5% sucrose, and 0.9% NaCl or Wortmannin (100 microg/kg body weight). On P17, the retinal vascular and avascular area, neovascular blood vessel tufts, and main vessel tortuosity were quantified after perfusion of the mice with FITC-Concanavalin A. The mRNA levels of VEGF, angiopoietin 1 and 2 were quantified by real-time RT-PCR. RESULTS: After 17-AAG treatment, a reduction of the vascular area was measured from 37.8 +/- 5.2% to 30.8 +/- 5.7% (P = 0.005), and an increase of the avascular area from 10.8 +/- 5.6% to 20.3 +/- 6.6% (P = 0.001). No alteration of the vascular pattern, the number of blood vessel tufts and the main vessel tortuosity was achieved by treatment with the PI-3 kinase inhibitor Wortmannin. After treatment with 17-AAG, the numbers of tufts (127.9 33.2) were different from the controls (173.7 +/- 55.2, P = 0.035), but not the main vessel tortuosity. No significant change in VEGF and angiopoietin 1 mRNA expression could be achieved with either of the treatments. Wortmannin treatment also did not change the angiopoietin 2 mRNA level, whereas the level was reduced in 17-AAG treated mice retina from 436-fold (+/- 64) to 200-fold (+/-55) (P = 0.035). CONCLUSION: An IP injection of 17-AAG is able to reduce angioproliferative retinopathy in a mouse model for oxygen-induced retinopathy. Our data indicate that the mechanism does not involve a direct or indirect reduction of the VEGF mRNA level, but acts downstream of the VEGF pathway. Thus, 17-AAG probably does not work by PI-3 kinase inhibition but via the Ras/Raf/MEK pathway. These data underline the potential utility of tyrosine kinase inhibitors in hypoxia induced neovascularization.[1]

References

  1. Geldanamycin treatment reduces neovascularization in a mouse model of retinopathy of prematurity. Kociok, N., Krohne, T.U., Poulaki, V., Joussen, A.M. Graefes Arch. Clin. Exp. Ophthalmol. (2007) [Pubmed]
 
WikiGenes - Universities