The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Sequence and expression of GLN3, a positive nitrogen regulatory gene of Saccharomyces cerevisiae encoding a protein with a putative zinc finger DNA-binding domain.

The GLN3 gene of Saccharomyces cerevisiae is required for the activation of transcription of a number of genes in response to the replacement of glutamine by glutamate as source of nitrogen. We cloned the GLN3 gene and constructed null alleles by gene disruption. GLN3 is not essential for growth, but increased copies of GLN3 lead to a drastic decrease in growth rate. The complete nucleotide sequence of the GLN3 gene was determined, revealing one open reading frame encoding a polypeptide of 730 amino acids, with a molecular weight of approximately 80,000. The GLN3 protein contains a single putative Cys2/Cys2 zinc finger which has homology to the Neurospora crassa NIT2 protein, the Aspergillus nidulans AREA protein, and the erythroid-specific transcription factor GATA-1. Immunoprecipitation experiments indicated that the GLN3 protein binds the nitrogen upstream activation sequence of GLN1, the gene encoding glutamine synthetase. Neither control of transcription nor control of initiation of translation of GLN3 is important for regulation in response to glutamine availability.[1]


WikiGenes - Universities